平行3軸式トランスアクスルユニット モックアップ

Parallel 3-Axis Type Transaxle Unit Mockup

高速回転玉軸受

High Speed Ball Bearing

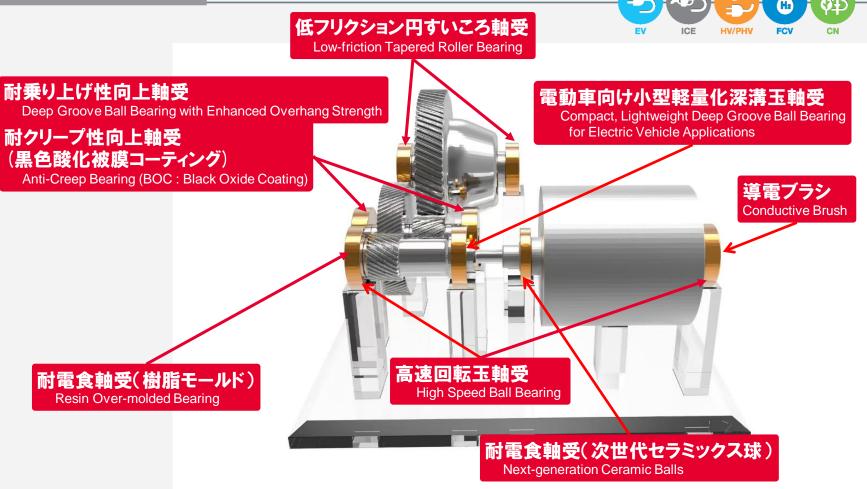
耐電食軸受(次世代セラミックス球)

Next-generation Ceramic Balls

耐電食軸受(樹脂モールド)

Resin Over-molded Bearing

導雷ブラシ


Conductive Brush

低フリクション円すいころ軸受

Low-friction Tapered Roller Bearing

電動車向け小型軽量化深溝玉軸受

Compact, Lightweight Deep Groove Ball Bearing for Electric Vehicle Applications

電動車駆動モータ用 高速回転玉軸受

High Speed Ball Bearing for Electric Vehicle Applications

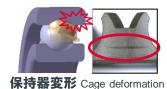
開発の狙い Aims of Development

- ・高速回転時の遠心力大による保持器変形、保持器破損に対応する為、保持器材料及び形状を最適化
- A cage material and shape have been optimized to cope with cage deformation and cage deformation caused by huge centrifugal force during high-speed rotation
- ・金属接触による異常発熱、焼付きに対応した低発熱、低フリクションの高速対応グリースを適用

A high-speed compatible grease with low heat generation and low friction is applied to prevent abnormal heat generation and seizure caused by metal contact

製品の概要と特長(構造・原理) Products Overview and Features (Structure and Principle)

焼付き Seizure


金属接触による異常発熱. 焼付き発生

Bearing seizure from excessive heat generation due to metal contact

広範囲な温度域にて低発熱, 低フリクションの高速対応グリース適用

Application of high-speed grease which has low heat generation and low friction over wide temperature range

保持器破損 Cage fracture

応力增大 Stress increase

遠心力による保持器変形, 応力増大により, 外輪接触, ポケット摩耗, ポケット底からの破損が発生

Cage deformation and stress increase due to centrifugal force causes wear and fracture of cage

高剛性な樹脂材料適用・保持器形状の最適化

Application of high-stiffness plastic, optimization of cage design

高速回転軸受の開発 Developing high speed ball bearing

		標準 Standard	従来高速仕様 High-Speed Gen1	高速仕様 Gen2 High-Speed Gen2	高速仕様 Gen3 High-Speed Gen3	高速仕様 Gen4 High-Speed Gen4
グリース Grease		標準 Standard	高速対応グリース High-speed grease			
保持器	形状 Shape			軽量化 lightweight	更に軽量化 more lightweight	軽量化+高剛性 lightweight & high rigidity
Cage	材料 Material	鉄 Iron	標準樹脂材 Standard Plastic	高剛性樹脂材 High-stiffness Plastic		
許容回転数 dmN		55万 0.55 million	80万 0.8 million	140万 1.4 million	180万 1.8 million	210万 2.1 million

☆dmN = Pitch circle diameter (dm) × Maximum speed (N)

耐電食ソリューション

Solution of Electrical Erosion Resistant

開発の狙い Aims of Development

電食やユニットの形態に合わせて、様々な耐電食ソリューションを提供

NSK provide various electrical erosion resistant solutions according to electrical erosion type and structure of eAxle

耐電食技術 Technology of electrical erosion resistant		耐電食性 Performance	耐久性 Durability	搭載性 Installability	コスト
絶縁 Insulation	セラミックス球 Ceramic ball	0	0	0	×
	樹脂モールド軸受 Resin over-molded bearing	0	0	0	0
導電 Conduction	導電ブラシ Conductive brush	0	0	0	0
	導電グリース Conductive grease	\triangle	\triangle	0	0

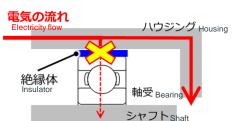
製品の概要と特長(構造・原理) Products Overview and Features (Structure and Principle)

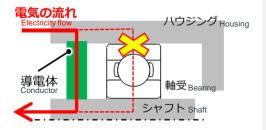
耐電食技術 Technology of Electrical Erosion Resistant

電気を流さない

Block electricity flow

■ 樹脂モールド軸受


Resin Over-molded bearing


Conduction

電気をバイパス Bypass electricity flow

■ 導電ブラシ

Conductive brush

耐電食軸受(樹脂モールド)

Electrical Erosion Resistant Bearing- Resin Over-molded bearing

開発の狙い Aims of Development

高コストなセラミックス球に替わる低コストな耐電食技術を開発

Low-cost electrical erosion resistant technology replacing high-cost ceramic balls

耐久性、絶縁破壊電圧の向上とインピーダンス値の設計が可能

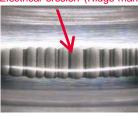
Improved durability, withstand voltage, and enabled the impedance value design

製品の概要と特長(構造・原理) Products Overview and Features (Structure and Principle)

耐電食技術 Technology of electrical erosion resistant		耐電食性 Performance	耐久性 Durability	搭載性 Installability	コスト
絶縁	セラミックス球 Ceramic ball	0	0	0	×
Insulation	樹脂モールド軸受 Resin over-molded bearing	0	0	0	0
導電	導電ブラシ Conductive brush	0	0	0	0
Conduction	導電グリース Conductive grease	Δ	Δ	0	0

樹脂モールド軸受 Resin Over-molded bearing

• 適用推奨部位:モータ支持軸受、ギヤ支持軸受 Applicable position: Motor support, gear support.

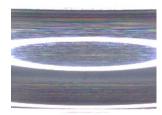

電食防止効果 Electrical erosion resistant performance: O

標準軸受(樹脂モールドなし)

Standard bearing (Without resin molding)

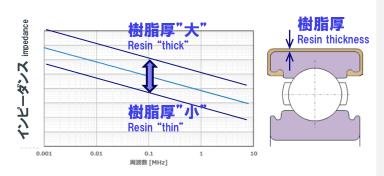
電食(リッジマーク)発生

Electrical erosion (Ridge-mark)


電圧:3V / 周波数:1kHz Voltage:3V / frequency:1kHz

樹脂モールドあり

With resin over-molded


表面損傷なし

No surface damage

電圧:50V / 周波数:100kHz

インピーダンス値の調整が可能 Impedance can be adjusted

樹脂厚を変化させることで、インピーダンス調整可能

Impedance can be adjusted by changing the resin thickness

導電ブラシ

Conductive Brush

開発の狙い Aims of Development

高コストなセラミックス球に替わる低コストな耐電食のための導電技術を開発

Low-cost conductive technology for electrical erosion resistant replacing high-cost ceramic balls

EVモータの高速回転時でもカーボンブラシに電流を流すことによって電食を抑制

Prevents electrical erosion by passing an electric current through the carbon brush in high-speed rotation

製品の概要と特長(構造・原理) Products Overview and Features (Structure and Principle)

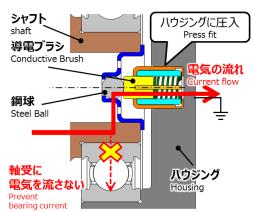
耐電食技術 Technology of electrical erosion resistant		耐電食性 Performance	耐久性 Durability	搭載性 Installability	コスト Cost
絶縁 Insulation	セラミックス球 Ceramic ball	0	0	0	×
	樹脂モールド軸受 Resin over-molded bearing	0	0	0	0
導電	導電ブラシ Conductive brush	0	0	0	0
Conduction	導電グリース Conductive grease	Δ	Δ	0	0

オシロスコープ波形 Oscilloscope waveform

カーボンブラシ Carbon brush

アキシアル方向から軸中心にブラシを接触・通電させるため 油環境下でも電食を抑制可能

Due to the structure in which the brush is contacted and energized from the axial direction to the center of the shaft.


Suppresses electrical erosion even in an oily environment

ホールAssy Ball Assy

ブラシASSY Brush Assy

ラジアル方向接触 Radial contact

アキシアル方向接触 Axial contact

電動車向け小型軽量化深溝玉軸受

Compact, Lightweight Deep Groove Ball Bearing for Electric Vehicle Applications

開発の狙い Aims of Development

・新開発「幅狭組合せ樹脂保持器」により幅狭化と高速化対応を実現

New developed "Narrow-width combined plastic cage" enabled narrower width and higher-speed performance.

・他既存技術と組合せることで、大幅な小型軽量化、低フリクション化を実現

With utilizing NSK existing technologies achieves significant compact, lightweight and low-friction.

製品の概要と特長(構造・原理) Products Overview and Features (Structure and Principle)

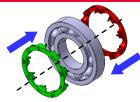
従来保持器 Conventional design

一方向から組付ける構造

Structure to assemble from one-direction.

高速回転時、遠心力で保持器が変形し外輪と保持器が干渉する

Interference with outer ring due to cage deformation by huge centrifugal force during high-speed rotation.



変形抑制=剛性UPの為、 高速化対応には肉厚UPが必要となる

Increase thickness is necessary to accommodate higher-speed rotation to reduce deformation.

許容回転数 dmN: 180万 1.8 million

幅狭組合せ樹脂保持器 Narrow-width combined plastic cage

両側から1対の保持器を組付ける構造

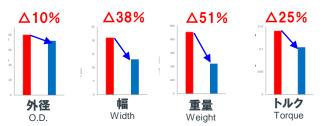
Structure to assemble a pair of cages assembled from both sides of the bearing

保持器剛性がUPし、遠心力での変形が低減

Increased cage rigidity reduces deformation due to centrifugal force.

保持器の薄肉化が可能となり。 幅狭化と高速化対応が可能


Enables thinner cage, which achieves narrower width and higher-speed performance.


許容回転数 dmN:214万以上 2.14 million or more

開発品の効果 Features of developed product

既存技術との組合せにより、 小型軽量化と低フリクション化を達成

Compact, lightweight and low-friction with utilizing NSK existing technologies.

\(\text{dmN} = \text{Pitch circle diameter (dm)} \times \text{Maximum speed (N)} \)

低フリクション円すいころ軸受

Low-friction Tapered Roller Bearing

開発の狙い Aims of Development

「転がり摩擦」「攪拌抵抗」「すべり摩擦」の全てを低減し低フリクションな軸受を実現

Lineup of low-friction bearings that reduce all of "rolling", "agitating" and "sliding" friction

自動車の燃費、電費向上に貢献

Contribute to energy (fuel) economy improvements

製品の概要と特長(構造・原理) Products Overview and Features (Structure and Principle) Gen.7 ころ数最適化 ころ頭部と内輪 Gen.5 樹脂保持器の採用 Gen.6 転がり摩擦 Optimization of roller number 大つば面の粗さ改善 Using plastic cage 潤滑油の攪拌抵抗 Rolling friction 軸受内部の油量最適化 Improvement of roller head ・特殊クラウニングの活用 Agitating friction and inner ring large rib Optimizing the amount of Using special crowning oil inside the BRG surface roughness ・希薄潤滑環境向け保持器技術の活用 潤滑油の攪拌抵抗 Using cage technology of lean lubrication Agitating friction 転がり摩擦 Rolling friction Gen.1 すべり摩擦 Gen.2 組み合わせ可 すべり摩擦 域のフリケジ BRG friction Sliding friction Gen.5 to 7 can be Sliding friction Gen.5 combined Gen.6 攪拌抵抗低減 Gen.7 すべり摩擦低減 Reduce agitating friction 転がり摩擦低減 Reduce sliding friction Reduce rolling friction 回転速度 rolling speed

