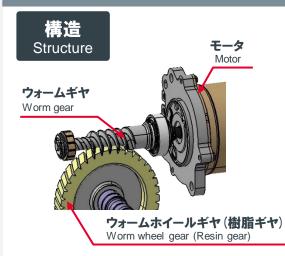
樹脂ギヤの小型化技術

Technologies for compact resin gear

開発の狙い Aims of Development


電動パワーステアリング(EPS)の減速機構部のサイズを小さくし搭載性向上に貢献する樹脂ギヤ

Resin gear which reduces the size of the reduction mechanism for Electric Power Steering and improves mountability

材料技術、加工技術、設計技術により強度を保ちながら小型化を実現

Achieved compact size while maintaining strength with material technology, processing technology and design technology

製品の概要と特長(構造・原理) Products Overview and Features (Structure and Principle)

樹脂ギヤの小型化技術

Technologies for compact resin gear

材料技術

Material technology

加工技術

Processing technology

設計技術

Design technology

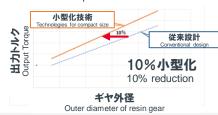
Improved durability by tuning the base resin material

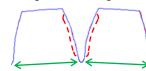
 歯面創成加工による歯面面圧の緩和 Relaxation of tooth surface pressure by tooth flank creation processing

・ベース樹脂材料のチューニングによる耐久性向上

- FEM解析を活用した限界設計 Limit design using Finite Element Method analysis
- 樹脂ギヤブランク (創成加工前) 設計による歯元部強化 Reinforced root of tooth by resin gear blank design

●歯面創成加工


Tooth flank creation processing


噛合い面積が増え、面圧が緩和

The meshing contact area is increased, and the surface pressure is relieved.

●樹脂ギヤブランク設計

Resin gear blank design

ブランク歯面 Blank tooth surface

創成加工後歯面 Tooth surface after

creation processing

歯面創成加工部以外はブランク状態の ままとなり、歯元部をより強化できる

Since the root of tooth is in a blank state, strength of the gear can be improved.

これらの技術の組み合わせにより ギャサイズ10%の小型化を実現

Achieved 10% reduction in gear size

