TECHNICAL INFORMATION

Part A

TECHNICAL	INFORMATION
-----------	--------------------

1.	TYPES AND FEATURES OF ROLLING BEARINGS A 005
2.	SELECTION OF BEARING TYPES A 019
3.	SELECTION OF BEARING ARRANGEMENT A 025
4.	SELECTION OF BEARING SIZE A 030
5.	SPEEDS
6.	BOUNDARY DIMENSIONS AND IDENTIFYING NUMBERS
	FOR BEARINGS A 103
7.	BEARING TOLERANCES A 125
8.	FITS AND INTERNAL CLEARANCES A 153
9.	PRELOAD
10.	FRICTION
11.	LUBRICATION A 227
12.	BEARING MATERIALS A 243
13.	DESIGN OF SHAFTS AND HOUSINGS A 269

1. TYPES AND FEATURES OF ROLLING BEARINGS

1.1	Design and	Classification		A 0	006
-----	------------	-----------------------	--	-----	-----

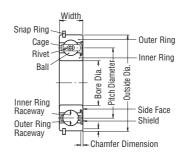
1.2	Characteristics of Rolling	Bearings	A	006
-----	----------------------------	----------	---	-----

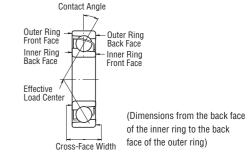
1.3	Bearing Sizes		A 013
-----	----------------------	--	-------

1.TYPES AND FEATURES OF ROLLING BEARINGS

1.1 Design and Classification

Rolling bearings generally consist of rolling elements, two rings, and a cage. They are classified into radial bearings or thrust bearings depending on the direction of the main load. In addition, depending on the type of rolling elements, they are classified into ball bearings or roller bearings and further divided by differences in their design or specific purpose.


The most common bearing types and part names are shown in Fig.1.1, and a general classification of rolling bearings is shown in Fig. 1.2.


1.2 Characteristics of Rolling Bearings

Compared with plain bearings, rolling bearings have the following major advantages:

- Their starting torque or friction is low and the difference between the starting torque and running torque is small.
- (2) With the advancement of worldwide standardization, rolling bearings are internationally available and interchangeable.
- (3) Maintenance, replacement, and inspection are easy because of the simple structure surrounding rolling bearings.
- (4) Many rolling bearings are capable of taking both radial and axial loads simultaneously or independently.
- (5) Rolling bearings can be used under a wide range of temperatures.
- (6) Rolling bearings can be preloaded to produce a negative clearance and achieve greater rigidity.

Furthermore, different types of rolling bearings have their own individual advantages. The features of the most common rolling bearings are described on Pages A010 to A013 and in Table 1.1 (Pages A014 and A015).

Single-Row Deep Groove Ball Bearing Single-Row Angular Contact Ball Bearing

Outer Ring Rib

-Shaped

Lock - Washer

Sleeve

Nut

Der

Thrust Collar

Inner Ring

Roller

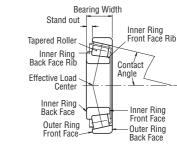
Cylindrical

Cylindrical Roller Bearing

Spherical Roller Bearing

Roller

Tapered Bore


Inner Ring_

Outer Ring-

Spherical Roller

Dia

Rib

Tapered Roller Bearing

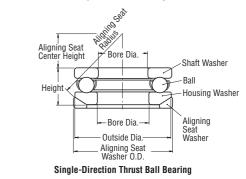
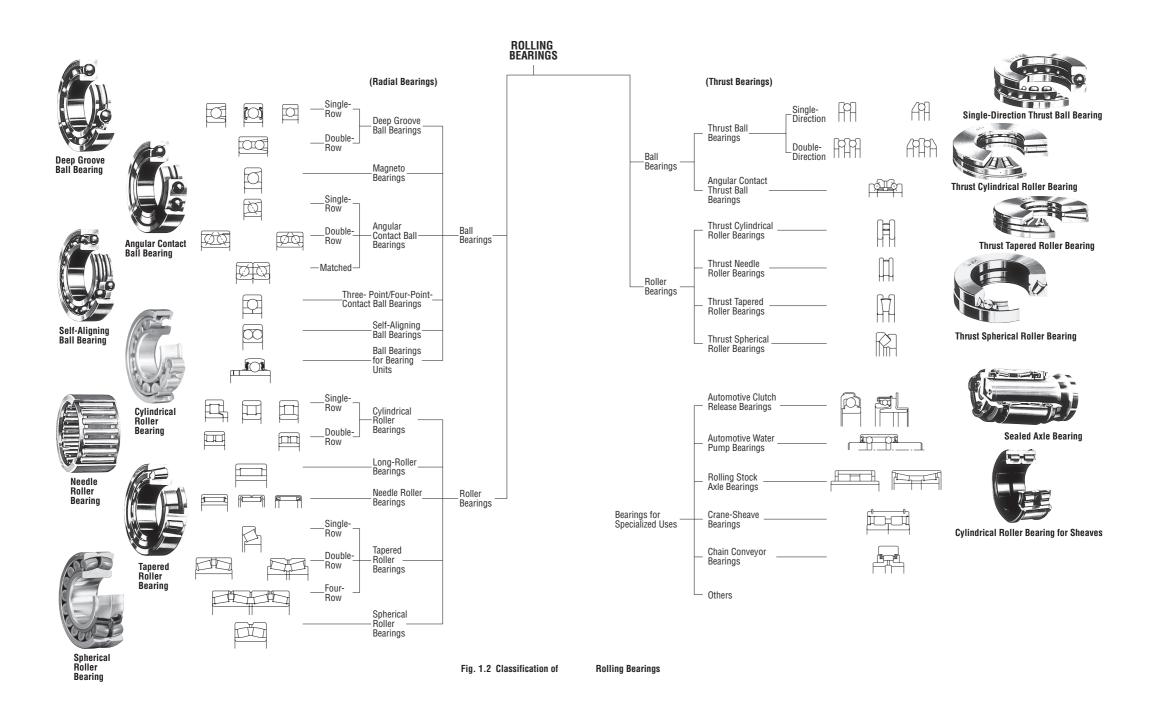



Fig. 1.1 Names of Bearing Parts

Single-Row Deep Groove **Ball Bearings**

Single-row deep groove ball bearings are the most common type of rolling bearing and are in widespread use. The raceway grooves on both the inner and outer rings have circular arcs of slightly larger radii than those of the balls. They are capable of taking radial loads. In addition, axial loads can be applied in either direction. Because of their low torque, they are highly suitable for applications where high speeds and low power loss are required.

While they can be used as open bearings, single-row deep groove bearings often have steel shields or rubber seals installed on one or both sides and are prelubricated with grease. In addition, snap rings are sometimes used on the periphery. Pressed-steel cages are most commonly used.

The inner groove of magneto bearings is slightly more shallow than that of deep groove bearings. Since the outer ring has a shoulder on only one side, the outer ring may be removed, which is often advantageous for mounting. In general, two such bearings are used in a paired mounting. Magneto bearings are small bearings with a bore diameter of 4 to 20 mm and are mainly used for small magnetos, gyroscopes, instruments, etc. Pressed-brass cages are generally used.

Sinale-Row Ball Bearings

Individual bearings of this type are capable of taking axial loads in one direction and radial loads. **Angular Contact** Four contact angles of 15°, 25°, 30°, and 40° are available. The larger the contact angle, the higher the axial load capacity. For high-speed operation however, smaller contact angles are preferred. Usually, two bearings are used in a paired mounting, and the clearance between them must be adjusted properly.

> Pressed-steel and machined-brass cages are commonly used; however, for high precision bearings with a contact angle less than 30°, polyamide resin cages are often used.

Paired Mounting A combination of two radial bearings is called a paired mounting. Usually, they are formed using angular contact ball bearings or tapered roller bearings. Possible arrangements include: face-to-

face (type DF), in which the outer ring faces are oriented towards each other; back-to-back (type DB); or same-direction (type DT), in which both front faces are oriented in the same direction. DF and DB arrangements are capable of taking radial loads and axial loads in both directions. Type DT is used when there is a strong axial load in one direction and it is necessary to divide the load equally across each bearing.

Double-Row **Ball Bearings**

Double-row angular contact ball bearings are like two single-row angular contact ball bearings Angular Contact mounted back-to-back, except that they have only one inner ring and one outer ring. They have a narrower width than two single bearings, and can take thrust loads in both directions.

Four-Point-Contact **Ball Bearings**

The inner and outer rings of four-point-contact ball bearings are separable because the inner ring is split in a radial plane. They can take axial loads from either direction, and the balls have a contact angle of 35° with each ring. Radial loads are not reccomended. Just one bearing of this type can replace a combination of face-to-face or back-to-back angular contact bearings. Machined-brass cages are generally used.

The inner ring of this type of bearing has two raceways, and the outer ring has a single spherical raceway with its center of curvature coincident with the bearing axis. Therefore, the axis of the inner ring, balls, and cage can deflect to some extent around the bearing center. Consequently, minor angular misalignment of the shaft and housing caused by machining or mounting error is automatically corrected.

This type of bearing often has a tapered bore for mounting using an adapter sleeve.

In bearings of this type, the cylindrical rollers are in linear contact with the raceways. They have a Roller Bearings high radial load capacity and are suitable for high speeds.

NU, NJ, NUP, N, and NF are single-row bearing types, while NNU and NN are double-row bearing types, with designations depending on the design or absence of side ribs.

cages are employed.

The outer and inner rings of all types are separable. Some cylindrical roller bearings have no ribs on either the inner or outer ring, so that the rings can move axially relative to each other. These can be used as free-end bearings. Cylindrical roller bearings, in which either the inner or outer ring has two ribs and the other ring has one, are

capable of taking some axial load in one direction. Double-row cylindrical roller bearings have high radial rigidity and are used primarily for precision machine tools. Pressed steel or machined brass cages are generally used, but sometimes molded polyamide Needle Roller Bearings

Needle roller bearings contain many slender rollers with a length 3 to 10 times their diameter. As a result, the ratio of the bearing outside diameter to the inscribed circle diameter is small, and they have a rather high radial load capacity.

There are numerous types available, and many have no inner ring. The drawn-cup type has a pressed-steel outer ring and the solid type has a machined outer ring. There are also cage and roller assemblies without rings. Most bearings have pressed-steel cages, but some do not use cages.

Tapered Roller Bearings

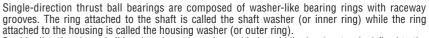
Bearings of this type use conical rollers guided by a back-face rib on the inner ring. These bearings are capable of taking high radial loads and also axial loads in one direction. The HR Series features a greater quantity of larger rollers, allowing for even higher load capacity.

They are generally mounted in pairs in a manner similar to single-row angular contact ball bearings. In this case, the proper internal clearance can be obtained by adjusting the axial distance between the inner or outer rings of the two opposed bearings. Since they are separable, the inner ring assemblies and outer rings can be mounted independently.

Tapered roller bearings are divided into three types depending on contact angle; these are normal angle, medium angle, and steep angle. Double-row and four-row tapered roller bearings are also available. Pressed-steel cages are generally used.

These bearings have barrel-shaped rollers between the inner ring, which has two raceways, and the outer ring, which has one spherical raceway. Since the center of curvature of the outer ring raceway surface coincides with the bearing axis, they are self-aligning in a manner similar to that of self-aligning ball bearings. Therefore, if there is deflection of the shaft or housing or

misalignment of their axes, it is automatically corrected so that excessive force is not applied to the bearings.


Spherical roller bearings can take not only heavy radial loads, but also some axial loads in either direction. They have excellent radial load-carrying capacity and are suitable for use where there are heavy or impact loads.

Some bearings have tapered bores and may be mounted directly on tapered shafts or cylindrical shafts using adapters or withdrawal sleeves.

Pressed-steel and machined-brass cages are used.

Single-Direction Thrust Ball Bearings

Double-direction thrust ball bearings have three rings with the middle ring (center ring) fixed to the **Double-Direction** shaft.

Thrust Ball Bearings As their names imply, single-direction thrust bearings can take axial loads in one direction, while double-direction thrust bearings can take axial loads in both directions.

There are also thrust ball bearings with an aligning seat washer beneath the housing washer in order to compensate for shaft misalignment or mounting error.

Pressed-steel cages are usually used in smaller bearings and machined cages in larger bearings.

Thrust Sphericial These bearings have a spherical raceway in the housing washer and barrel-shaped rollers obliquely **Roller Bearings** arranged around it. Since the raceway in the housing washer is spherical, these bearings are self-

aligning. They have a very high axial load capacity and are capable of taking moderate radial loads when an axial load is applied.

Ressed-steel cages or machined-brass cages are usually used.

1.3 Bearing Sizes

Rolling berings are classified into the following sizes based on their dimensions:

Size Classification	Nominal Bore Diameter	Nominal Outside Diameter
Miniature	-	<9 mm
Extra Small	<10 mm	≥9 mm
Small	≥10 mm	Up to ~80 mm
Medium	-	~80 to ~180 mm
Large	-	~180 to 800 mm
Extra Large	-	~800 mm and above

TYPES AND FEATURES OF ROLLING BEARINGS

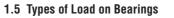
Table 1. 1 Rolling Bearings:

Double-Row Cylindrical Roller Bearings Deep Groove Ball Bearings Duplex Angular Contact Ball Bearings Four-Point-Contact Ball Bearings Self-Aligning Ball Bearings Cylindrical Roller Bearings Cylindrical Roller Bearings Magneto Bearings Angular Contact Ball Bearings Double-Row Angular Contact Bearing Туре Ball with Single Rib Bearings Ø Ø ØQ 斑 ØQ \square 口 Features \bigcirc (\circ) (\circ) 0 () \bigcirc $(\circ$ Radial Loads Ο Load Capacity **→** \bigcirc \bigcirc \bigcirc Axial Loads 0 (\circ) 0 × Х Combined (\circ) (\circ) (\circ) Ο Ο × × Loads \bigcirc \bigcirc \bigcirc (\circ) (\circ) (\bigcirc) (\circ) (\circ) 0 High Speeds \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc (\circ) High Accuracy \bigcirc Low Noise and Torque $(\bigcirc$ \bigcirc \bigcirc \bigcirc ()Rigidity \bigcirc Angular Misalignment $\left[\circ \right]$ 0 Ο Ο 0 \bigcirc \bigcirc Self-Aligning Capability ☆ Ring Separability ☆ ☆ ☆ ☆ ☆ Fixed-End Bearing ☆ ☆ ☆ ☆ ☆ Free-End Bearing \star \star * ☆ ☆ * * Inner Ring Tapered Bore ☆ ☆ Contact angles of 15", 25", Use and 40". Wo bearings are usually mounted in opposition. Clearance adjustment is mecessary. is t for Contact angle of 35° .⊑ Including NNU type Two bearings are usually mounted ir opposition. Combination of DF and DT pairs is possible, but not fi use on free-end. Including NF type Including N type Remarks C005 C053 C005 C050 C072 C106 C072 C108 C124 Page No. C072 C072 C114 C124 C124 C158 One direction Excellent O Good Fair Conditional \times Unsuitable Two directions only ☆ Applicable ★ Applicable, allow for shaft contraction/elongation at bearing fitting surfaces.

Types	and	Characteristics
19000	unu	0110100101101100

Cylindrical Roller Bearings with Thrust Collars	Needle Roller Bearings	Tapered Roller Bearings	Double-and Multi-Row Tapered Roller Bearings	Spherical Roller Bearings	Thrust Ball Bearings	Thrust Ball Bearings with Aligning Seat	Double- Direction Angular Contact Thrust Ball Bearings	Thrust Cylindrical Roller Bearings	Thrust Tapered Roller Bearings	Thrust Spherical Roller Bearings	Page No.
	r	P			RA	RAA	Bearings		₽¶ }	RA	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	×	×	×	×	×	0	_
$\stackrel{}{\bigcirc}$	×	$\bigcup_{i=1}^{i}$	$\overrightarrow{\bigcirc}$	$\left \begin{array}{c} \overrightarrow{O} \end{array} \right $	$\bigcup_{i=1}^{l}$	$\bigcup_{i=1}^{i}$	$\overrightarrow{\bigcirc}$	Ŭ.	Ŭ.	Ŭ.	_
\bigcirc	×	\bigcirc	\bigcirc	\bigcirc	×	×	×	×	×	0	_
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	×	\bigcirc	0	0	0	A022 A098
		\bigcirc			\bigcirc		\bigcirc				A023 A126 A151
											A023
\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc	\bigcirc		A023 A192
\bigcirc	0	\bigcirc	0	\bigcirc	×	\bigcirc	×	×	×	\bigcirc	A022 Blue pages of each brg. type
				☆		\$				☆	A022
\$	☆	☆	☆		☆	☆	☆	☆	☆	☆	A023 A024
☆			☆	☆							A026 to A029
	☆		*	*							A026 to A029
				☆							A150 B008 B012
Including NUP type		Two bearings are usually mounted in opposition. Clearance adjustment is necessary.	KH and KV types are also available but not for use on free-end.					Including needle roller thrust bearings		To be used with oil lubrication	
C124	C341	C182	C182 C246	C258	C296	C296		C314	C322	C332	

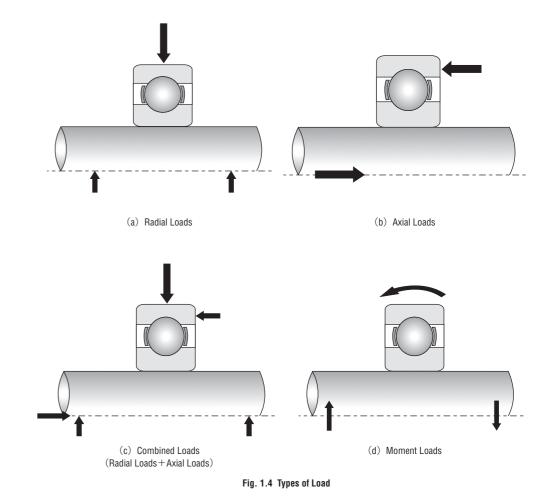
TYPES AND FEATURES OF ROLLING BEARINGS


1.4 Contact Angle and Bearing Types

A bearing's contact angle (α) refers to the angle between a vertical plane of the rotation axis of the bearing and a straight line between the points where the rolling element comes in contact with the inner ring raceway and outer ring raceway. Radial bearings and thrust bearings are classified depending on the size of the contact angle.

Figure 1.3 shows the relation between contact angle and load direction on the bearing.

 $\frac{\text{Radial bearing } \alpha \text{: Less than 45}^{\circ}}{\text{(A primarily radial load is supported.)}}$


 $\frac{\text{Thrust bearing } \alpha \text{: Over 45}^{\circ}}{(\text{A primarily axial load is supported.})}$

An example deep groove ball bearing is shown below in Figure 1.4 along with the types of load that may be applied to a rolling bearing. These are:

(a) Radial load
(b) Axial load
(c) Combined radial and axial load
(d) Moment load

It is important to select the optimum bearing type according to the type and magnitude of the load.

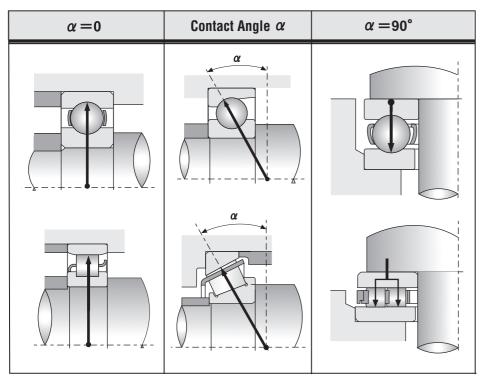


Fig. 1.3 Contact Angle α

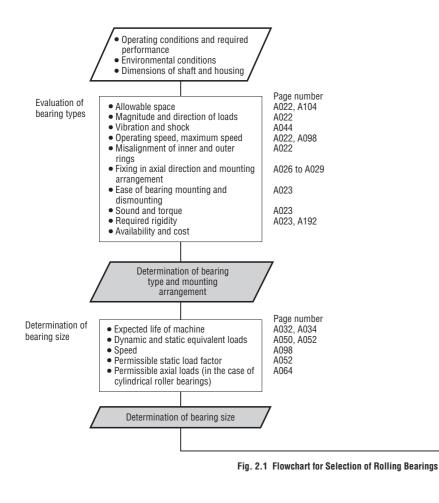
2. SELECTION OF BEARING TYPE

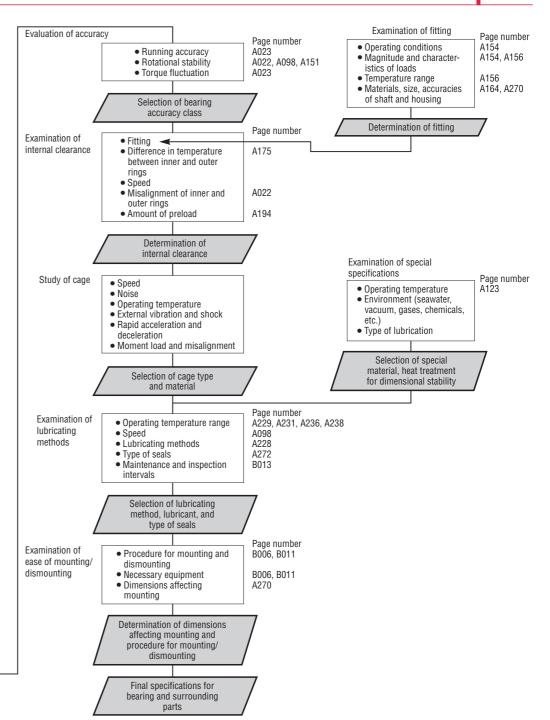
2.1	Bearing Selection	Procedure	A 020
-----	--------------------------	-----------	-------

2.2	Allowable Bear	ng Space	A 02
-----	----------------	----------	------

- 2.3 Load Capacity and Bearing Types A 022
- 2.4 Permissible Speed and Bearing Types A 022
- 2.5 Misalignment of Inner/Outer Rings and Bearing Types A 022
- 2.6 Rigidity and Bearing Types A 023
- 2.7 Noise and Torque of Various Bearing Types A 023
- 2.8 Running Accuracy and Bearing Types A 023
- 2.9 Mounting and Dismounting of Various Bearing Types ---- A 023

2. SELECTION OF BEARING TYPE


2.1 Bearing Selection Procedure


There are nearly countless applications for rolling bearings; therefore, operating conditions and environments vary greatly. In addition, the diversity of operating conditions and bearing requirements continues to grow with the rapid advancement of technology. Bearings must be carefully studied from many angles to select the best choice from the thousands of types and sizes available.

Usually, a bearing type is provisionally chosen considering operating conditions, mounting arrangement, ease of mounting in the machine, allowable space, cost, availability, and other factors. Then the size of the bearing is chosen to satisfy the desired life requirement. When doing this, in addition to fatigue life, be sure to consider grease life, noise and vibration. wear, and other factors.

There is no fixed procedure for selecting bearings. It is good to investigate experience with similar applications and studies relevant to any special requirements for the specific application. When selecting bearings for new machines, unusual operating conditions, or harsh environments, please consult with NSK.

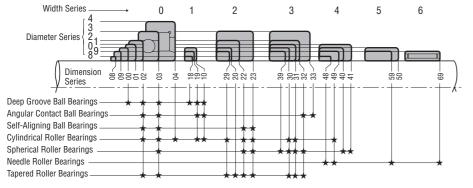
The following diagram (Fig.2.1) shows an example bearing selection procedure.

2.2 Allowable Bearing Space

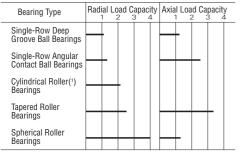
The allowable space for a rolling bearing and its adjacent parts is generally limited, so the type and size of the bearing must be selected within such limits. In most cases, the shaft diameter is fixed first by the machine design; therefore, the bearing is often selected based on bore size. Rolling bearings have numerous standardized Dimension Series and types from which to select the optimum bearing. Fig. 2.2 shows the Dimension Series of radial bearings and corresponding bearing types.

2.3 Load Capacity and Bearing Types

The axial load-carrying capacity of a bearing is closely related to radial load capacity based on the bearing design, as shown in Fig. 2.3. This figure shows that when bearings of the same Dimension Series are compared, roller bearings have a higher load capacity than ball bearings and are superior if shock loads exist.


2.4 Permissible Speed and Bearing Types

The maximum speed of rolling bearings varies not only with the type of bearing, but also with size, cage type, loads, lubricating method, heat dissipation, etc. Assuming the common oil bath lubrication method, the bearing types are roughly ranked from higher speed to lower speed as shown in Fig. 2.4.


2.5 Misalignment of Inner/Outer Rings and Bearing Types

Because of shaft deflection caused by applied loads, dimensional errors of the shaft and housing, and mounting errors, the inner and outer rings are slightly misaligned. The permissible misalignment varies depending on the bearing type and operating conditions, but usually it is less than 0.0012 radian (4').

When a large misalignment is expected, bearings with self-aligning capability, such as self-aligning ball bearings, spherical roller bearings, and certain bearing units should be selected (Figs. 2.5 and 2.6).

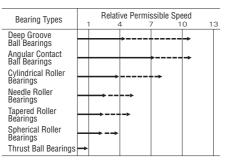


Fig. 2.2 Dimension Series of Radial Bearings

Note(1) Bearings with ribs can take some axial loads.

Fig. 2.3 Relative Load Capacities of Various Bearing Types

Remarks ---- Oil bath lubrication ---- With special measures to increase speed limit

Fig. 2.4 Relative Permissible Speeds of Various Bearing Types Permissible bearing misalignment is given at the beginning of the dimensional tables for each bearing type.

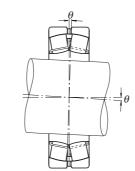
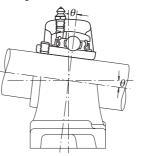



Fig. 2.5 Permissible Misalignment of Spherical Roller Bearings

Fig. 2.6 Permissible Misalignment of Ball Bearing Units

Bearing Types	Highest Accuracy Specified	Tolerance Comparison of Inner Ring Radial Runout 1 2 3 4 5
Deep Groove Ball Bearings	Class 2	
Angular Contact Ball Bearings	Class 2	
Cylindrical Roller Bearings	Class 2	
Tapered Roller Bearings	Class 4	
Spherical Roller Bearings	Normal	

Fig. 2.7 Relative Inner Ring Radial Runout of Highest Accuracy Class for Various Bearing Types

2.6 Rigidity and Bearing Types

When loads are imposed on a rolling bearing, some elastic deformation occurs in the contact areas between the rolling elements and raceways. The rigidity of the bearing is determined by the ratio of bearing load to the amount of elastic deformation of the inner and outer rings and rolling elements. The main spindles of machine tools must have highly rigid bearings together with the rest of the spindle. Consequently, since roller bearings are deformed less by load, they are selected more often than ball bearings. When extra-high rigidity is required, bearings are given a preload, which means they have a negative clearance. Angular contact ball bearings and tapered roller bearings are often preloaded.

2.7 Noise and Torque of Various Bearing Types

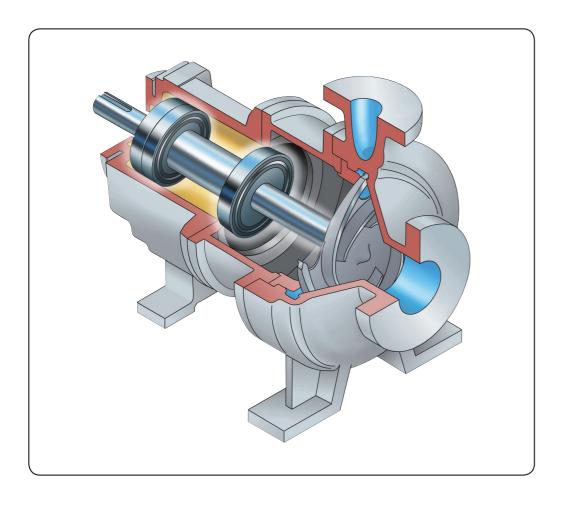
Since rolling bearings are manufactured with very high precision, noise and torque are minimal. For deep groove ball bearings and cylindrical roller bearings in particular, the noise level is sometimes specified depending on their purpose. For high-precision miniature ball bearings, the starting torque can be specified. Deep groove ball bearings are recommended for applications in which low noise and torque are required, such as in motors or instruments.

2.8 Running Accuracy and Bearing Types

For the main spindles of machine tools that require high running accuracy or high-speed applications like superchargers, high-precision bearings of Accuracy Class 5, 4 or 2 are usually used.

The running accuracy of rolling bearings is specified in various ways, and specified accuracy classes vary depending on the bearing type. A comparison of the inner ring radial runout for the highest running accuracy specified for each bearing type is shown in Fig. 2.7.

Deep groove ball bearings, angular contact ball bearings, and cylindrical roller bearings are most suitable for applications requiring high running accuracy.


2.9 Mounting and Dismounting of Various Bearing Types

Separable bearings, such as cylindrical roller bearings, needle roller bearings, and tapered roller bearings are convenient for mounting and dismounting. These types of bearings are recommended for machines in which bearings are mounted and dismounted rather often for periodic inspection. In addition, selfaligning ball bearings and spherical roller bearings (small-sized) with tapered bores can be mounted and dismounted relatively easily using sleeves.

3. SELECTION OF BEARING ARRANGEMENT

3.1	Fixed-End and Free-End	Bearings	A 026
-----	------------------------	-----------------	-------

3.2 Example Bearing Arrangements A 027

3. SELECTION OF BEARING ARRANGEMENT

In general, shafts are supported by only two rolling bearings. When considering the bearing mounting arrangement, the following items must be investigated: (1) Expansion and contraction of the shaft caused by

- temperature variations (2) Ease of bearing mounting and dismounting
- (3) Misalignment of the inner and outer rings caused
- (4) Rigidity of the entire system, including bearings
- and preloading method (5) Capability to sustain loads at their proper positions
- (b) capability to sustain loads at their proper positions and to transmit them

3.1 Fixed-End and Free-End Bearings

Usually only one "fixed-end" bearing on a shaft is used to fix the shaft axially. For this fixed-end bearing, a bearing type that can carry both radial and axial loads must be selected.

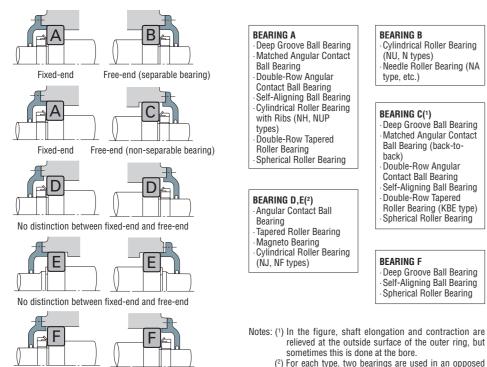
Other bearings must be "free-end" bearings that carry only radial loads to relieve the shaft's thermal elongation and contraction.

If measures to relieve a shaft's thermal elongation and contraction are insufficient, abnormal axial loads will be applied to the bearings, which can cause premature failure.

For free-end bearings, cylindrical roller bearings or needle roller bearings with separable inner and outer rings that are free to move axially (NU, N types, etc.) are recommended. Mounting and dismounting are also easier with these types.

When non-separable types are used as free-end bearings, usually the fit between the outer ring and housing is loose to allow axial movement of the running shaft together with the bearing. Sometimes, such elongation is relieved by a loose fit between the inner ring and shaft.

When the distance between the bearings is short and the influence of the shaft elongation and contraction is negligible, two opposed angular contact ball bearings or tapered roller bearings are used. The axial clearance (possible axial movement) after the mounting is adjusted using nuts or shims. The distinction between free-end and fixed-end bearings and some possible bearing mounting arrangements for various bearing types are shown in Fig. 3.1.


3.2 Example Bearing Arrangements

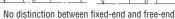

Some representative bearing mounting arrangements considering preload and rigidity of the entire assembly, shaft elongation and contraction, mounting error, etc. are shown in Table 3.1.

Table 3. 1 Representative Bearing Mounting Arrangements and Application Examples

Bearing Arrangements		Derrorder		
Fixed-end	Free-end	Remarks	Application Examples	
		 This is a common arrangement in which abnormal loads are not applied to bearings even if the shaft expands or contracts. If mounting error is small, this is suitable for high speeds. 	Medium-sized electric motors, blowers	
		 This arrangement can withstand heavy loads and shock loads and can take some axial load. All cylindrical roller bearings are separable. This is helpful when interference is necessary for both the inner and outer rings. 	Traction motors for rolling stock	
		 This arrangement is used when loads are relatively heavy. A back-to-back type is used for maximum rigidity as a fixed-end bearing. Both the shaft and housing must have high accuracy and the mounting error must be small. 	Table rollers for steel mills, main spindles of lathes	
		OThis arrangement is suitable when interference is necessary for both the inner and outer rings. Heavy axial loads cannot be applied.	Calender rolls of paper making machines, axles of diesel locomotives	
		 This arrangement is suitable for high speeds and heavy radial loads. Moderate axial loads can also be applied. Some clearance is necessary between the outer ring of the deep groove ball bearing and the housing bore in order to avoid subjecting it to radial loads. 	Reduction gears in diesel locomotives	

Continued on next page

distinction between fixed-end and free-end

Fig. 3.1 Bearing Mounting Arrangements and Bearing Types

arrangement

SELECTION OF BEARING ARRANGEMENT -

Table 3. 1 Representative Bearing Mounting Arrangements and Application Examples (cont'd)

Bearing Arrangements	Remarks	Application Systematics
Fixed-end Free-end		Application Examples
	 This is the most common arrangement. Olt can sustain not only radial loads, but also moderate axial loads. 	Double-suction volute pumps, automotive transmissions
	 This is the most suitable arrangement when there is mounting error or shaft deflection. It is often used for general and industrial applications in which heavy loads are applied. 	Speed reducers, table rollers of steel mills, wheels for overhead travelling cranes
	 This is suitable when there are rather heavy axial loads in both directions. Double-row angular contact bearings may be used instead of an arrangement of two angular contact ball bearings. 	Worm gear reducers
When there is no distinction betwee fixed-end and free-end	Remarks	Application Examples
	OThis arrangement is widely used since it can	Pinion shafts of automotive
Back-to-back mounting	 withstand heavy loads and shock loads. The back-to-back arrangement is especially good when the distance between bearings is short and moment loads are applied. Face-to-face mounting makes mounting easier when interference is necessary for the inner ring. In general, this arrangement is good when there is mounting error. To use this arrangement with a preload, take extra care to ensure the correct amount of preload and clearance adjustment. 	differential gears, automotive front and rear axles, worm gear reducers

When there is no distinction between fixed-end and free-end	Remarks	Application Examples	
NJ + NJ mounting	 This arrangement can withstand heavy loads and shock loads. It can be used if interference is necessary for both the inner and outer rings. Take care to ensure sufficient axial clearance during operation. NF type + NF type mounting is also possible. 	Final reduction gears of construction machines	
	OSometimes a spring is used on the side of the outer ring of one bearing.	Small electric motors, small speed reducers, small pumps	
Vertical arrangements	Remarks	Application Examples	
	 Matched angular contact ball bearings are used on the fixed end. A cylindrical roller bearing is used on the free end. 	Vertical electric motors	
	 The spherical center of the self-aligning seat must coincide with that of the self-aligning ball bearing. The upper bearing is on the free end. 	Vertical openers (spinning and weaving machines)	

Continued on next page

4. SELECTION OF BEARING SIZE

4.1 Bea	ring Life A 032
4.1.1	Rolling Fatigue Life and Basic Rating Life A 032
4.2 Bas	ic Load Rating and Fatigue Life A 032
4.2.1	Basic Load Rating A 032
4.2.2	Machinery in Which Bearings are Used and Projected Life A 034
4.2.3	Selection of Bearing Size Based on Basic Load Rating
4.2.4	Temperature Adjustment for Basic Load Rating A 035
4.2.5	Correction of Basic Rating Life A 037
4.2.6	Life Calculation of Multiple Bearings as a Group
	A 038
4.2.7	New Life Theory A 040
4.3 Cal	culation of Bearing Loads A 044
4.3.1	Load Factor A 044
4.3.2	Bearing Loads in Belt or Chain Transmission Applications
4.3.3	Bearing Loads in Gear Transmission Applications
4.3.4	Load Distribution on Bearings
4.3.5	Average Fluctuating Load A 046
4.3.6	Combination of Rotating and Stationary Loads $\dots\dots$ A $_{048}$
4.4 Equ	ivalent Load A 050
4.4.1	Calculation of Equivalent Loads A 050
4.4.2	Axial Load Components in Angular Contact Ball Bearings and Tapered Roller Bearings A 051
4.5 Sta	tic Load Ratings and Static Equivalent Loads A 052
4.5.1	Static Load Ratings A 052
4.5.2	Static Equivalent Loads
4.5.3	Permissible Static Load Factor

4.6 Exam	ple Bearing Calculations A 054
	ing Type and Allowable Axial Load
	Change in Contact Angle of Radial Ball Bearings and Allowable Axial Load
	hange in Contact Angle Due to Axial Load A 058
	llowable Axial Load for a Deep Groove Ball Bearing
• • •	A 062
	Allowable Axial Load (Rib Breakdown Strength) for
	Cylindrical Roller Bearings
4.8 Tech	nical Data A 066
	Fatigue Life and Reliability
	Radial Clearance and Fatigue Life
	Visalignment of Inner/Outer Rings and
	Fatigue Life of Deep Groove Ball Bearings
4.8.4 I	Misalignment of Inner/Outer Rings and
I	Fatigue Life of Cylindrical Roller Bearings A 072
4.8.5	Dil Film Parameters and Rolling Fatigue Life A 074
4.8.6 I	EHL Oil Film Parameter Calculation Diagram A 076
(1) 0	il Film Parameter A 076
(2) 0	il Film Parameter Calculation Diagram
	fect of Oil Shortage and Shearing Heat Generation
	A 080
-	Load Calculation for Gears A 082
	alculation of Loads on Spur, Helical, and ouble-Helical Gears
. ,	alculation of Load on Straight Bevel Gears
	alculation of Load on Spiral Bevel Gears A 088
	alculation of Load on Hypoid Gears
	alculation of Load on Worm Gears

4. SELECTION OF BEARING SIZE

4.1 Bearing Life

The functionality required of a rolling bearing varies per application and must be maintained for a specific period of time. Even if bearings are properly mounted and correctly operated, they will eventually fail to perform satisfactorily due to an increase in noise and vibration, loss of running accuracy, deterioration of grease, or fatigue flaking of the rolling surfaces. Bearing life, in a broad sense of the term, is the period during which bearings continue to operate and satisfy their required functions. This bearing life may be defined as noise life, abrasion life, grease life, or rolling fatigue life, depending on which causes loss of bearing service.

Aside from the failure of bearings to function due to natural deterioration, bearings may fail when conditions such as heat-seizure, fracture, scoring of the rings, damage to the seals or cage, or other damage occurs.

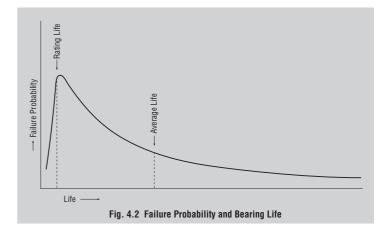
Conditions such as these should not be interpreted as normal bearing failure since they often occur as a result of errors in bearing selection, improper design or manufacture of the bearing surroundings, incorrect mounting, or insufficient maintenance.

4.1.1 Rolling Fatigue Life and Basic Rating Life

When rolling bearings are operated under load, the raceways of their inner and outer rings and rolling elements are subjected to repeated cyclic stress. Because of metal fatigue of the rolling contact surfaces of the raceways and rolling elements, scaly particles may separate from the bearing material (Fig. 4.1). This phenomenon is called "spalling" or "flaking". Rolling fatigue life is represented by the total number of revolutions at which the bearing surface will start flaking due to stress. As shown in Fig. 4.2, even for seemingly identical bearings of the same type, size, and material that receive the same heat treatment and other processing, the rolling fatigue life varies greatly, even under identical operating conditions. This is because the flaking of materials due to fatigue is subject to many other variables. Consequently, "basic rating life", in which rolling fatigue life is treated as a statistical phenomenon, is used in preference to actual rolling fatigue life.

Suppose a number of bearings of the same type are operated individually under the same conditions. After a certain period of time, 10 % of them fail as a result of flaking caused by rolling fatigue. The total number of revolutions at this point is defined as the basic rating life or, if the speed is constant, the basic rating life is often expressed by the total number of operating hours completed when 10 % of the bearings become inoperable due to flaking.

In determining bearing life, basic rating life is often the only factor considered; however, other factors must also be taken into account. For example, the grease life of grease-lubricated bearings (refer to Section 11, Lubrication, Page A228) can be estimated. Since noise life and abrasion life are judged according to individual standards for different applications, specific values for noise or abrasion life must be determined empirically.


4.2 Basic Dynamic Load Rating and Fatigue Life

4.2.1 Basic Dynamic Load Rating

The basic dynamic load rating is defined as the constant load applied on bearings with stationary outer rings that the inner rings can endure for a rating life of one million revolutions (10^6 rev). The basic dynamic load rating of radial bearings is defined as a central radial load of constant direction and magnitude, while the basic load rating of thrust bearings is defined as an axial load of constant magnitude in the same direction as the central axis. Load ratings are listed under C_r for radial bearings and C_a for thrust bearings in the dimension tables.

Fig. 4.1 Flaking Example

4.2.2 Machinery in Which Bearings are Used and Projected Life

Selecting bearings with unnecessarily high load ratings is not advised, as such bearings may be too large and uneconomical. In addition, bearing life alone should not be the deciding factor in the selection of bearings. The strength, rigidity, and design of the shaft on which the bearings will be mounted should also be considered. Bearings are used in a wide range of applications and design life varies with specific applications and operating conditions. Table 4.1 gives empirical fatigue life factors derived from typical operating experience for various machines. Formulae for various life parameters can be found in Table 4.2.

Table 4.1 Fatigue Life Factor $f_{\rm b}$ for Various Bearing Applications

Operating Period	Fatigue Life Factor $f_{ m h}$						
Operating Period	≤3	2–4	3–5	4–7	≥6		
Infrequently used or only for short periods	Small motors for home appliances, such as vacuum cleaners and washing machines • Power tools	• Agricultural equipment					
Used only occasionally but reliability is impor- tant		Motors for home heaters and air conditioners Construction equipment	Conveyors Elevator cable sheaves				
Used intermittently for relatively long periods	Rolling mill roll necks	Small motors Deck cranes General cargo cranes Pinion stands Passenger cars	Factory motors Machine tools Transmissions Vibrating screens Crushers	Crane sheaves Compressors Specialized transmissions			
Used intermittently for more than eight hours daily		Escalators	Centrifugal separators Air conditioning equipment Blowers Woodworking machines Large motors Axle boxes on railway rolling stock	Mine hoists Press flywheels Railway traction motors Locomotive axle boxes	• Paper making machines		
Used continuously and high reliability is impor- tant					Waterworks pumps Electric power stations Mine draining pumps		

Table 4.2 Basic Rating Life, Fatigue Life Factor, and Speed Factor

Life Parameter	Ball Bearings	Roller Bearings			
Basic Rating Life	$L_{\rm h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^3 = 500 f_{\rm h}^3$	$L_{\rm h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^{\frac{10}{3}} = 500 f_{\rm h}^{\frac{10}{3}}$			
Fatigue Life Factor	$f_{\rm h} = f_{\rm n} \frac{C}{P}$	$f_{\rm h} = f_{\rm n} \frac{C}{P}$			
Speed Factor	$f_{n} = \left(\frac{10^{6}}{500 \times 60n}\right)^{\frac{1}{3}} = (0.03n)^{-\frac{1}{3}}$	$f_n = \left(\frac{10^6}{500 \times 60n}\right)^{\frac{3}{10}} = (0.03n)^{-\frac{3}{10}}$			
n, f_n Fig. 4.3 (See Page A036), Appendix Table 12 (See Page E018)					
$I_{\rm r}$ f Fig $\Lambda \Lambda$ (See Page A036) Appendix Table 13					

 $L_{\rm h}, f_{\rm h}$Fig. 4.4 (See Page A036), Appendix Table 13 (See Page E019)

4.2.3 Selection of Bearing Size Based on Basic Load Rating

The following relation exists between bearing load and basic rating life: $(\alpha)^{2}$

(4.1)

For ball bearings
$$L = \left(\frac{C}{P}\right)^{-1}$$
 (4.1)
For roller bearings $L = \left(\frac{C}{P}\right)^{\frac{10}{3}}$ (4.2)

where L: Basic rating life (10⁶ rev)

P: Bearing load (equivalent load) (N), {kgf}(Refer to Page A050) C: Basic dynamic load rating (N), {kgf} For radial bearings, C is written C_r

For thrust bearings. C is written C_{a} It is convenient to express the fatigue life in terms

of hours for bearings that run at a constant speed. In general, the fatigue life of bearings used in automobiles and other vehicles is given in terms of mileage.

By designating the basic rating life as $L_{\rm h}$ (h), bearing speed as $n \pmod{1}$, fatigue life factor as f_h , and speed factor as f_n , the relations shown in Table 4.2 are obtained.

If the bearing load P and speed n are known, it's possible to determine a fatigue life factor $f_{\rm h}$ appropriate for the desired life of the machine and then calculate the minimum basic load rating C with the following Equation:

$$C = \frac{f_{\rm h} \cdot P}{f_{\rm n}} \quad \dots \qquad (4.3)$$

A bearing that satisfies this value of C should then be selected from the bearing tables.

4.2.4 Temperature Adjustment for Basic Load Rating

If rolling bearings are used at high temperatures, the hardness of the bearing steel decreases. Consequently, the basic load rating, which depends on the physical properties of the material, also decreases; therefore, the basic dynamic load rating should be adjusted for higher temperatures through the following equation:

$$C_{\rm t} = f_{\rm t} \cdot C \quad \dots \quad (4.4)$$

- where $C_{\rm t}$: Basic dynamic load rating after temperature correction $(N), \{kgf\}$
 - $f_{\rm t}$: Temperature factor (See Table 4.3.)
 - C: Basic dynamic load rating before temperature adjustment $(N), \{kgf\}$

If bearings are used above 120 °C, they must be given a special dimensional stability heat treatment to prevent excessive dimensional changes. The basic dynamic load rating of bearings after such treatment may become lower than that listed in the bearing tables.

Table 4.3 Temperature Factor $f_{\rm t}$

Bearing Temperature °C	125	150	175	200	250
Temperature Factor $f_{\rm t}$	1.00	1.00	0.95	0.90	0.75

П (min ⁻¹)	$f_{\rm n}$	П (min ⁻¹)	$f_{\rm n}$	L _h (h)	$f_{ m h}$	L _h (h)	$f_{ m h}$
60000 -	- 0.08	60000	0.105	80000-	5.5	80000	4.5
40000	- 0.09	40000 -	- 0.12	60000	5.0	60000	
30000 -	- 0.1	30000 -	-0.13				4.0
20000 —	- 0.12	20000 -	- 0.14 - 0.15	40000 -	4.5	40000	
15000 -	_	15000 -	0.16	30000	4.0	30000	- 3.5
10000 —	- 0.14	10000 -	-0.17	1			
8000	- 0.16	8000	- 0.19 - 0.20	20000-	3.5	20000-	- 3.0
6000 —	- 0.18	6000 -	-	15000 -		15000	
4000 —	- 0.20	4000	0.05	-	- 3.0	-	
3000	-	3000 -	- 0.25	10000 -		10000 -	2.5
2000 -	0.25	2000 —	- 0.30	8000	2.5	8000	- -
1500 —		1500 -	-	6000 -		6000	
1000	- 0.3	1000	0.35	-		1	2.0
800	_	800 -	-0.40	4000	2.0	4000	- 1.9 - 1.8
600 -	-04	600 -	-	3000 -	- 1.9 - 1.8	3000	1.7
400	- 0.4	400	-0.45		1.7		1.6
300 -		300 -	-0.5	2000 -	- 1.6	2000 -	1.5
200	- 0.5	200 -		1500 —	1.5	1500 —	- 1.4
150	- 0.6	150	-0.6	1500 -	1.4		- 1.3
	-		-0.7	1000 —	1.3	1000 -	- 1.2
100 — 80 —	- 0.7	100 — 80 —	- 0.7	- 800 -	1.2	800	6
60	- 0.8	60	-0.8		1.1	600	— 1.1
50 -	- 	50 -	-0.9	600 - 500 -	1.0	500	1.0
40 -	- 1.0	40	-1.0	400 -	0.95	400-	0.95
30	- 1.1	30 -	- —1.1	400	0.90		-0.90
20 -	- 1.2	20 —	- 1.2	300 -	0.85	300	0.85
15	- 1.3	15 -		-	0.80		0.80
10	— 1.4 — 1.5	10	-1.4	200 –	<u> </u>	200-	0.75
Ball Bear	ings	Rolle Bear		Ball Bea	rings	Rolle Bear	
Fig. 4		ring Speed a ed Factor	nd	Fig.		ue Life Fac Fatigue Lif	

4.2.5 Correction of Basic Rating Life

As described previously, the basic equations for calculating basic rating life are as follows:

For ball bearings	$L_{10} = \left(\frac{C}{P}\right)^3 \dots (4.5)$	
For roller bearings	$L_{10} = \left(\frac{C}{P}\right)^{\frac{10}{3}} \dots $	

 L_{10} life is defined as the basic rating life with a statistical reliability of 90%. Depending on the machines in which the bearings are used, sometimes a reliability higher than 90% may be required. However, recent improvements in bearing material have greatly extended fatigue life. In addition, the development of the Elasto-Hydrodynamic Theory of Lubrication proves that the thickness of the lubricating film in the contact zone between rings and rolling elements greatly influences bearing life. To reflect such improvements in the calculation of fatigue life, the basic rating life is adjusted using the following adjustment factors:

$L_{\rm na} = a_1 a_2 a_3 L_{10} \cdots (4.7)$

- where L_{na} : Adjusted rating life in which reliability, material improvements, lubricating conditions, etc. are considered
 - L_{10} : Basic rating life with a reliability of 90%
 - *a*₁: Life adjustment factor for reliability
 - *a*₂: Life adjustment factor for special bearing properties
 - a_3 : Life adjustment factor for operating conditions

The life adjustment factor for reliability a_1 , is listed in Table 4.4 for reliabilities higher than 90%.

The life adjustment factor for special bearing properties a_2 is used to reflect improvements in bearing steel.

NSK now uses vacuum-degassed bearing steel, and test results show that life is greatly improved compared with earlier materials. The basic load ratings C_r and C_a listed in the bearing tables were calculated considering the extended life achieved by improvements in materials and manufacturing techniques. Consequently, when estimating life using Equation (4.7), you may assume that a_2 is greater than one.

Table 4.4 Reliability Factor a

Reliability (%)	90	95	96	97	98	99
a_1	1.00	0.64	0.55	0.47	0.37	0.25

The life adjustment factor for operating conditions a_3 is used to adjust for various factors, particularly lubrication. If there is no misalignment between the inner and outer rings and the thickness of the lubricating film in the contact zones of the bearing is sufficient, it is possible for a_3 to be greater than one; however, a_3 is less than one in the following cases:

•When the viscosity of the lubricant in the contact zones between the raceways and rolling elements is low.

• When the circumferential speed of the rolling elements is very slow.

·When bearing temperature is high.

• When lubricant is contaminated by water or foreign matter.

• When misalignment of the inner and outer rings is excessive.

It is difficult to determine the proper value of a_3 for specific operating conditions because there are still many unknowns. Since the special bearing property factor a_2 is also influenced by the operating conditions, there is a proposal to combine a_2 and a_3 into one quantity($a_2 \times a_3$), and not consider them independently. In this case, under normal lubricating and operating conditions, the product ($a_2 \times a_3$) should be assumed equal to one. However, if the viscosity of the lubricant is too low, the value drops to as low as 0.2. If there is no misalignment and a lubricant with high viscosity is used so that a sufficient fluid-film

thickness is secured, the product of $(a_2 \times a_3)$ may be about two.

When selecting a bearing based on the basic load rating, it is best to choose an a_1 reliability factor appropriate for the projected use and an empirically determined *C/P* or f_h value derived from past results for lubrication, temperature, mounting conditions, etc. in similar machines.

The basic rating life Equations (4.1), (4.2), (4.5), and (4.6) give satisfactory results for a broad range of bearing loads. However, extra-heavy loads may cause detrimental plastic deformation at ball/raceway contact points. When P_r exceeds $C_{\rm or}$ (basic static load rating) or 0.5 C_r , whichever is smaller, for radial bearings or P_a exceeds 0.5 C_a for thrust bearings, please consult NSK to establish the applicability of the rating fatigue life equations.

4.2.6 Life Calculation of Multiple Bearings as a Group

When multiple rolling bearings are used in one machine, the fatigue life of individual bearings can be determined if the load acting on individual bearings is known. However, a machine generally becomes inoperative if a bearing in any part fails. It may therefore be necessary in certain cases to know the fatigue life of a group of bearings used in one machine. The fatigue life of the bearings varies greatly and our fatigue life calculation equation

$$L=\left(\frac{C}{P}\right)^{p}$$
 applies to the 90% life (also called the rating

fatigue life, which is either the gross number of revolutions or hours that 90% of multiple similar bearings operated under similar conditions can reach). In other words, the calculated fatigue life for one bearing has a probability of 90%. Since the endurance probability of a group of multiple bearings for a certain period is a product of the endurance probability of individual bearings for the same period, the rating fatigue life of a group of multiple bearings is not determined solely from the shortest rating fatigue life among the individual bearings. In fact, the group life is much shorter than the life of the bearing with the shortest fatigue life.

Assuming the rating fatigue life of individual bearings as L_1 , L_2 , L_3 ... and the rating fatigue life of the entire group of bearings as L, the equation below is obtained:

$$\frac{1}{L^{c}} = \frac{1}{L^{c}_{1}} + \frac{1}{L^{c}_{2}} + \frac{1}{L^{c}_{3}} + \cdots$$
 (4.8)

where e=1.1 (both for ball and roller bearings)

L of Equation (4.8) can be determined easily by using Fig. 4.5.

To use this chart, find the L_1 value from Equation (4.8) on the L_1 scale and the value of L_2 on the L_2 scale, connect them with a straight line, and read where the line intersects the *L* scale. In this way, the value of L_A in

$$\frac{1}{L_{A}^{e}} = \frac{1}{L_{1}^{e}} + \frac{1}{L_{2}^{e}}$$

can be determined. Take this value $L_{\rm A}$ on the $L_{\rm 1}$ scale and the $L_{\rm 3}$ value on the $L_{\rm 2}$ scale, connect them with a straight line, and read where the line intersects the Lscale. In this way, the value L in

$$\frac{1}{L^{\rm e}} = \frac{1}{L_1^{\rm e}} + \frac{1}{L_2^{\rm e}} + \frac{1}{L_3^{\rm e}}$$

can be determined.

Example

Assume that the calculated fatigue life values of automotive front wheel bearings are as follows: 280 000 km for inner bearing 320 000 km for outer bearing Then, the fatigue life of the wheel bearings can be determined as 160 000 km from Fig. 4.5. If the fatigue life of the bearing of the right-hand wheel bearing takes this value, the fatigue life of the left-hand wheel bearing will be the same. As a result, the fatigue life of the front wheels as a group is 85 000 km.

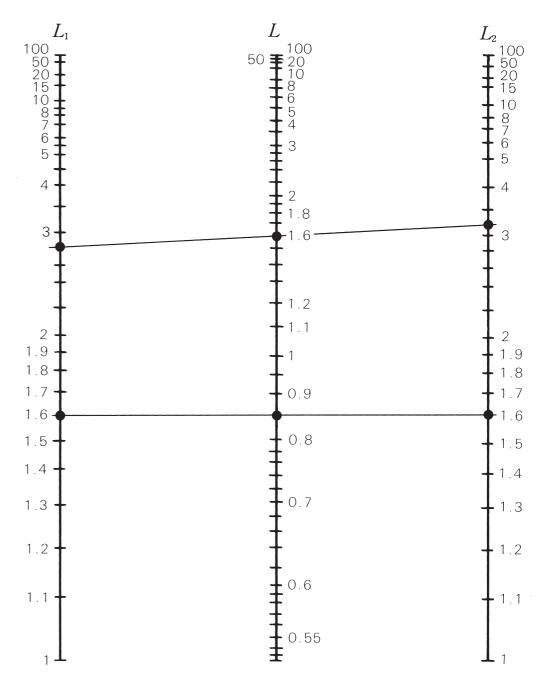


Fig. 4.5 Life Calculation Chart

4.2.7 New Life Theory

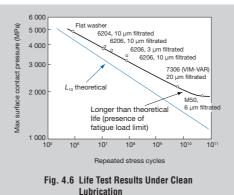
Bearing technology has advanced rapidly in recent years, particularly in the areas of dimensional accuracy and material cleanliness. As a result, bearings in a clean environment can now have a longer rolling fatigue life than the life obtained by the traditional ISO life calculation formula. This extended life is partly due to the important advancements in bearing-related technology, such as lubrication, cleanliness, and filtration.

The conventional life calculation formula (Equation 4.9) based on the theories of G. Lundberg and A. Palmgren (L-P theory, hereafter) addresses only subsurface-originated flaking. In this phenomenon, cracks initially occur due to dynamic shear stress immediately below the rolling surface and progressively reach the surface in the form of flaking.

$$ln \frac{1}{S} \propto \frac{\tau_{o}^{c} \cdot N^{c} \cdot V}{Z_{o}^{h}} \qquad (4.9)$$

NSK's new life calculation formula theorizes that rolling fatigue life is the sum total of the combined effects of both subsurface-originated flaking and surface-originated flaking occurring simultaneously.

NSK New Life Calculation Formula


(1) Subsurface-originated flaking

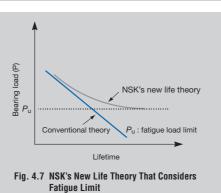

À precondition of subsurface-originated flaking in rolling bearings is contact of the rolling elements with the raceway via a sufficient and continuous oil film under clean lubrication conditions.

Fig. 4.6 plots the L_{10} life for each test condition with maximum surface contact pressure ($P_{\rm max}$) and the number of repeated stresses cycles.

In the figure, line L_{10} theoretical refers to the theoretical line obtained using the conventional life calculation formula. As maximum surface contact pressure decreases, the line representing actual life separates from the conventionally calculated theoretical line towards longer life. This separation suggests the presence of a fatigue load limit P_u below which no rolling fatigue occurs. The difference between NSK's revised theory (Equation 4.10) and the conventional theory is better illustrated in Fig. 4.7.

$$ln\frac{1}{S} \propto N^{c} \int_{V} \frac{(\tau - \tau_{u})^{c}}{Z_{o}^{h}} dV \cdots (4.10)$$


(2) Surface-originated flaking

Under actual bearing operation, the lubricant is often contaminated with foreign objects such as metal chips, burrs, cast sand, etc.

When foreign particles are mixed in the lubricant, they become pressed onto the raceways by the rolling elements and dents occur on the surfaces of the raceways and rolling elements. Stress concentrations occur at the edges of the dents, generating fine cracks that over time propagate into flaking of the raceways and rolling elements.

As shown in Fig. 4.8, actual life is shorter than conventional calculated life under contaminated lubrication conditions at low maximum surface pressure. This result shows that the actual life under contaminated lubrication is further shortened compared to the theoretical life because of the decrease in maximum surface contact pressure.

	Very Clean	Clean	Normal	Contaminated	Heavily Contaminated
a_c Factor	1	0.8	0.5	0.4-0.1	0.05
Application Guide	10 µm filtration	10–30 µm filtration	30–100 µm filtration	Greater than 100 µm filtration or no filtration (oil bath, circulating lubrication, etc.)	No filtration, presence of many fine particles
Application	Sealed grease- lubricated bearings for electrical appliances, information technology equipment, etc.	Sealed grease-lubricated bearings for electric motors, railway axle boxes, machine tools, etc.	Normal usage, automotive hub unit bearings, etc.	Bearings for automotive transmissions, industrial gearboxes, construction machines, etc.	_

Therefore, the new NSK life calculation formula considers the trend of results in life tests under clean conditions and low load. Based on these results, the new life equation is a function of $(P-P_u)/C$ affected by specific lubrication conditions identified by the lubrication parameter. In addition, the effects of different types and shapes of foreign particles are assumed to be strongly influenced by bearing load and lubrication conditions. Such a relationship can be expressed as a function of the load parameter. This relationship of the new life calculation formula is defined as $(P-P_u)/C \cdot 1/a_c$.

The Equation for calculating surface-originated flaking based on the above concept is as follows:

$$ln\frac{1}{S} \propto N^c \int_{V} \frac{(\tau - \tau_u)^c}{Z_o^h} dV \times \left\{\frac{1}{f(a_c, a_L)} - 1\right\} \cdots \cdots (\mathbf{4.11})$$

(3) Calculation of Contamination Coefficient *a*_c

The contamination coefficient in Table 4.5 is determined in terms of lubrication cleanliness. Test results on ball and roller bearings with grease and filtered lubrication show life as a number of times longer than the conventional calculation would suggest. Yet, hardness becomes a factor when foreign particles harder than Hv350 enter the bearing, causing dents on the raceway. Fatigue damage from these dents can progress to flaking in a short time. Test results on ball and roller bearings under foreign particle contamination show from 1/3 to 1/10 the conventionally calculated life.

Based on these test results, the contamination coefficient a_c for NSK's new life theory is classified into five levels.

TECHNICAL INFORMATION **NSK**

(4) New life calculation formula $L_{\rm able}$ The following formula, which combines subsurface-

originated flaking and surface-originated flaking, is proposed as the new life calculation formula:

Life Correction Factor *a*_{NSK}

The life correction factor a_{NSK} is the function of lubrication parameter $(P-P_u)/C \cdot 1/a_c$ as shown below:

$$a_{\text{NSK}} \propto F\left\{\frac{P-P_u}{C} \cdot \frac{1}{a_c}, a_L\right\}$$
 (4.14)

NSK's new life theory considers the life-extending effect of improved material and heat treatment by correcting contamination factor a_c . The theory also utilizes viscosity ratio K ($K = v/v_1$ where v is the operational viscosity and v_1 the required viscosity) because the lubrication parameter a_L changes with the degree of oil film formation based on the lubricant and operating temperature. The theory indicates that the better the lubrication conditions (higher K), the longer the life.

Figures 4.9 and 4.10 show the diagrams of correction factor $a_{\rm NSK}$ as a function of the new life calculation formula. In addition, point contact and line contact are considered separately for ball and roller bearings respectively in this new formula.

List of symbols used:

S : Probability that flaking does not occur after stress has been repeated N times

- N : Number of repeated stresses
- au : Internal stress
- τ : Internal stress at fatigue limit
- V : Stress volume
- Z0 : Depth at which maximum shear stress occurs
- ac : Contamination coefficient
- aL : Lubrication parameter
- (a function of viscosity ratio K)
- P : Load applied to bearing
- Pu : Fatigue load limit
- C : Basic dynamic load rating
- e, c, h : Constants

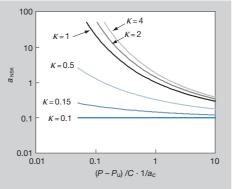


Fig. 4.9 New Life Calculation Diagram for Ball Bearings

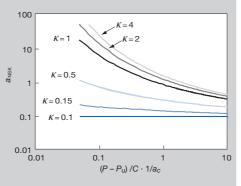


Fig. 4.10 New Life Calculation Diagram for Roller Bearings

Table 4.5Reliability Factor a_1 Used in New Life
Calculation Formula $L_{\rm able}$

Reliability (%)	90	95	96	97	98	99
a_1	1.00	0.62	0.53	0.44	0.33	0.21

To Access NSK Calculation Tools

Visit our website at http://www.nsk.com

4.3 Calculation of Bearing Loads

The loads applied on bearings generally include the weight of the body to be supported by the bearings, the weight of the rotating elements themselves, the transmission power of gears and belting, the load produced by operation of the machine in which the bearings are used, and so on. These loads can be theoretically calculated, but some of them are difficult to estimate. Therefore, be sure to correct estimates using empirically derived data.

4.3.1 Load Factor

When a radial or axial load has been mathematically calculated, the actual load on the bearing may be greater than the calculated load because of vibration and shock present during machine operation. The actual load may be calculated using the following equation:

$$\begin{cases} F_{\rm r} = f_{\rm w} \cdot F_{\rm rc} \\ F_{\rm a} = f_{\rm w} \cdot F_{\rm ac} \end{cases}$$
 (4.15)

where $F_{\rm r}, F_{\rm a}$: Loads applied on bearing (N), {kgf}

 $F_{\rm rc}, F_{\rm ac}$: Theoretically calculated load (N), $\{ kgf \}$

 $f_{
m w}$: Load factor

The values given in Table 4.6 are usually used for the load factor $f_{\rm w}.$

4.3.2 Bearing Loads in Belt or Chain Transmission Applications

The force acting on the pulley or sprocket wheel when power is transmitted with a belt or chain is calculated using the following equations:

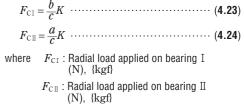
- $M = 9 550 000H / n \dots (N \cdot mm) \\= 974 000H / n \dots \{kgf \cdot mm\}$ (4.16)
- where M: Torque acting on pulley or sprocket wheel (N \cdot mm), {kgf \cdot mm}
 - $P_{\rm k}$: Effective force transmitted by belt or chain (N), {kgf}
 - H: Power transmitted(kW)
 - n : Speed (min⁻¹)
 - *r* : Effective radius of pulley or sprocket wheel (mm)

When calculating the load on a pulley shaft, belt tension must be included. Thus, to calculate actual load $K_{\rm b}$ for belt transmissions, the effective transmitting power is multiplied by the belt factor $f_{\rm b}$, which represents belt tension. The values of the belt factor $f_{\rm b}$ for different types of belts are shown in Table 4.7.

 $K_{\rm b}$ = $f_{\rm b} \cdot P_{\rm k} \cdots$ (4.18) For chain transmissions, values corresponding to $f_{\rm b}$ should be 1.25 to 1.5.

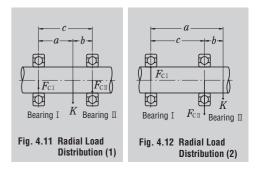
4.3.3 Bearing Loads in Gear Transmission Applications

The loads imposed on gears in gear transmissions vary according to the type of gears used. In the simplest case of spur gears, the load is calculated as follows:


$M = 9 550 000H / n \dots (N \cdot mm) $ = 974 000H / n \ldots {kgf \cdots mm}
$P_{\rm k} = M / r$ (4.20)
$S_{\rm k} = P_{\rm k} \tan \theta$ (4.21)
$K_{\rm c} = \sqrt{P_{\rm k}^2 + S_{\rm k}^2} = P_{\rm k} \sec \theta$
where M : Torque applied to gear $(N \cdot mm), \{kgf \cdot mm\}$

- $P_{\rm k}$: Tangential force on gear (N), {kgf}
- $S_{\rm h}$: Radial force on gear (N), {kgf}
- K_{c} : Combined force imposed on gear (N), {kgf}
- H: Power transmitted (kW)
- n : Speed (min⁻¹)
- *r* : Pitch circle radius of drive gear (mm)
- θ : Pressure angle

In addition to the theoretical load calculated above, vibration and shock, which depend on how accurately the gear is finished, should be included by multiplying the theoretically calculated load by gear factor f_g . The values of f_g should generally fall within the ranges in Table 4.8. When vibration from other sources occurs, the actual load is obtained by multiplying the load factor by this gear factor.


4.3.4 Load Distribution on Bearings

In the simple examples shown in Figs. 4.11 and 4.12, the radial loads on bearings I and II can be calculated using the following equations:

K: Shaft load (N), {kgf}

When these loads are applied simultaneously, first the radial load for each should be obtained, then the sum of the vectors may be calculated according to the load direction.

Table 4.6 Values of Load Factor $f_{\rm w}$

Operating Conditions	Typical Applications	$f_{ m w}$
Smooth operation free from shocks	Electric motors, Machine tools, Air conditioners	1 to 1.2
Normal operation	Air blowers, Compressors, Elevators, Cranes, Paper making machines	1.2 to 1.5
Operation accompanied by shock and vibration	Construction equipment, Crushers, Vibrating screens, Rolling mills	1.5 to 3

Table 4.7 Belt Factor $f_{\rm b}$

Type of Belt	$f_{ m b}$
Toothed belts	1.3 to 2
V belts	2 to 2.5
Flat belts with tension pulley	2.5 to 3
Flat belts	4 to 5

Table 4.8 Values of Gear Factor $f_{ m g}$

Gear Finish Accuracy	$f_{ m g}$
Precision ground gears	1 ~1.1
Ordinary machined gears	1.1~1.3

SELECTION OF BEARING SIZE

4.3.5 Average Fluctuating Load

When the load applied on bearings fluctuates, an average load that will yield the same bearing life as the fluctuating load should be calculated.

(1) When the relation between load and rotating speed is divided into the following steps (Fig. 4.13),

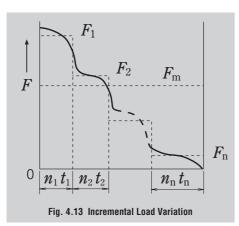
Load
$$F_1$$
: Speed n_1 ; Operating time t_1
Load F_2 : Speed n_2 ; Operating time t_2
 \vdots \vdots \vdots
Load F_n : Speed n_n ; Operating time t_n

the average load $F_{\rm m}$ may be calculated using the following equation:

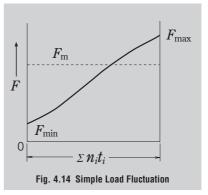
$$F_{\rm m} = \sqrt[{p}]{\frac{F_1^{\rm p} n_1 t_1 + F_2^{\rm p} n_2 t_2 + \dots + F_n^{\rm p} n_n t_n}{n_1 t_1 + n_2 t_2 + \dots + n_n t_n}}$$
(4.25)

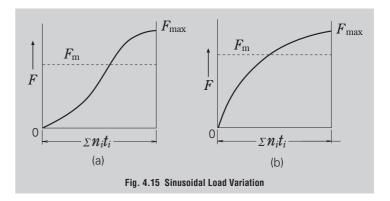
where $F_{\rm m}$: Average fluctuating load (N), {kgf} p = 3 for ball bearings

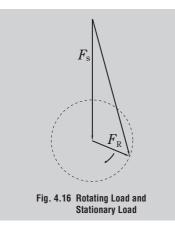
$$p = 10/3$$
 for roller bearings
The average speed n_m may be calculated as follows:


 $n_{\rm m} = \frac{n_1 t_1 + n_2 t_2 + \dots + n_n t_n}{t_1 + t_2 + \dots + t_n} \dots \dots \dots \dots \dots \dots \dots (4.26)$

(2) When the load fluctuates almost linearly (Fig. 4.14), the average load may be calculated as follows:


$$F_{\rm m} = \frac{1}{3} \left(F_{\rm min} + 2F_{\rm max} \right) \cdots \left(4.27 \right)$$


where F_{\min} : Minimum fluctuating load value (N), {kgf}


 F_{\max} : Maximum fluctuating load value (N), {kgf}

(3) When the load fluctuation is similar to a sine wave (Fig. 4.15), an approximate value for the average load $F_{\rm m}$ may be calculated from the following equation: In the case of Fig. 4.15 (a) $F_{\rm m} = 0.65 \ F_{\rm max} \cdots (4.28)$ In the case of Fig. 4.15 (b) $F_{\rm m} \doteq 0.75 \ F_{\rm max} \cdots (4.29)$ (4) When both a rotating load and a stationary load are applied (Fig. 4.16), $F_{\rm R}$: Rotating load (N), {kgf} $F_{\rm S}$: Stationary load (N), {kgf} an approximate value for the average load $F_{\rm m}$ may be calculated as follows: a) Where $F_{\rm R} \ge F_{\rm S}$ $F_{\rm m} = F_{\rm R} + 0.3F_{\rm S} + 0.2\frac{F_{\rm S}^2}{F_{\rm R}} \cdots (4.30)$ b) Where $F_{\rm R} < F_{\rm S}$ $F_{\rm m} = F_{\rm S} + 0.3F_{\rm R} + 0.2\frac{F_{\rm R}^2}{F_{\rm S}} \cdots (4.31)$

4.3.6 Combination of Rotating and Stationary Loads

Generally, rotating, static, and indeterminate loads act on a rolling bearing. In certain cases, both the rotating load, which is caused by weight from unbalance or vibration, and the stationary load, which is caused by gravity or power transmission, may act simultaneously. The combined mean effective load can be calculated when indeterminate load is caused by rotating and static loads. There are two kinds of combined loads: rotating and stationary, which are classified depending on the magnitude of the load, as shown in Fig. 4.17.

Namely, the combined load becomes a running load with magnitude changing as shown in Fig. 4.17 (a) if the rotating load is larger than the static load. The combined load becomes an oscillating load with a magnitude changing as shown in Fig. 4.17 (b) if the rotating load is smaller than the stationary load. In either case, the combined load F is expressed by the following equation:

 $F = \sqrt{F_{\rm R}^2 + F_{\rm S}^2 - 2F_{\rm R}F_{\rm S}\cos\theta} \quad \dots \qquad (4.32)$

where F_{R} : Rotating load (N), {kgf}

 F_{s} : Stationary load (Ń), {kgf} θ : Angle defined by rotating and stationary loads

Combined load *F* can be approximated by Equations (4.33) and (4.34) which vary sinusoidally depending on the magnitude of $F_{\rm R}$ and $F_{\rm S}$. $F_{\rm R}+F_{\rm S}$ becomes the maximum load $F_{\rm max}$ and $F_{\rm R}-F_{\rm S}$ becomes the minimum load $F_{\rm min}$ for $F_{\rm R} \gg F_{\rm S}$ or $F_{\rm R} \ll F_{\rm S}$.

$F_{\rm R} \gg F_{\rm S}, F = F_{\rm R} - F_{\rm S} \cos \theta$		(4.33)
$F_{\rm R} \ll F_{\rm S}, F = F_{\rm S} - F_{\rm R} \cos \theta$	•••••	(4.34)

Combined load F can also be approximated by Equations (4.35) and (4.36) when $F_{\rm R} = F_{\rm S}$. $F_{\rm R} > F_{\rm S}$.

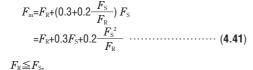
$$F = F_{\rm R} - F_{\rm S} + 2F_{\rm S} \sin \frac{\theta}{2} \qquad (4.35)$$

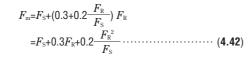
$$F_{\rm R} < F_{\rm S},$$

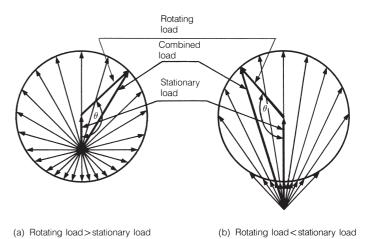
$$F = F_{\rm S} - F_{\rm R} + 2F_{\rm R} \sin \frac{\theta}{2} \qquad (4.36)$$

Curves of Equations (4.32), (4.33), (4.35), and (4.36) are shown in Fig. 4.18.

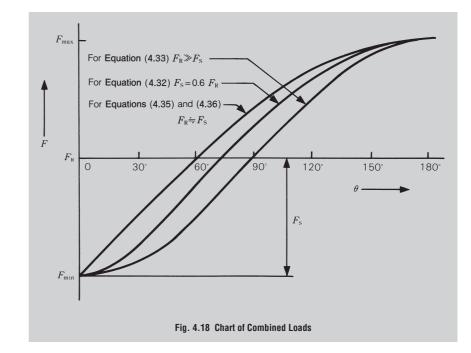
The mean load variation F_m as expressed by Equations (4.33) and (4.34) or (4.35) and (4.36) can be expressed respectively by Equations (4.37) and (4.38) or (4.39) and (4.40).


$\begin{array}{c} F_{\rm m} = F_{\rm min} + 0.65 \ (F_{\rm max} - F_{\rm min}) \\ F_{\rm R} \ge F_{\rm S}, \ F_{\rm m} = F_{\rm R} + 0.3F_{\rm S} \\ F_{\rm R} \le F_{\rm S}, \ F_{\rm m} = F_{\rm S} + 0.3F_{\rm R} \end{array} \cdots$	····· (4.37) ····· (4.38)
$\begin{array}{c} F_{\rm m} = F_{\rm min} + 0.75 \ (F_{\rm max} - F_{\rm min}) \\ F_{\rm R} \ge F_{\rm S}, \ F_{\rm m} = F_{\rm R} + 0.5F_{\rm S} \\ F_{\rm R} \le F_{\rm S}, \ F_{\rm m} = F_{\rm S} + 0.5F_{\rm R} \end{array} \cdots$	····· (4.39) ····· (4.40)


Generally, as the value F exists somewhere along Equations (4.37), (4.38), (4.39), and (4.40), the coefficient 0.3 or 0.5 of the second terms in these equations is assumed to change linearly along with $F_{\rm S}/F_{\rm R}$ or $F_{\rm R}/F_{\rm S}$. Thus, these factors may be expressed as follows:


 $0.3+0.2\frac{F_{\rm S}}{F_{\rm R}}, 0 \le \frac{F_{\rm S}}{F_{\rm R}} \le 1$ or $0.3+0.2\frac{F_{\rm R}}{F_{\rm S}}, 0 \le \frac{F_{\rm R}}{F_{\rm S}} \le 1$

Accordingly, $F_{\rm m}$ can be expressed by the following equation:


 $F_{\rm R} \geq F_{\rm S}$

4.4 Equivalent Load

In some cases, the loads applied on bearings are purely radial or axial loads; however, in most cases, the loads are a combination of both. In addition, such loads usually fluctuate in both magnitude and direction. In such cases, the loads actually applied on bearings cannot be used for bearing life calculations; therefore, a hypothetical load should be estimated. This load should have a constant magnitude that passes through the center of the bearing and gives the same bearing life that the bearing would attain under actual load and rotation conditions. Such a hypothetical load is called the equivalent load.

4.4.1 Calculation of Equivalent Loads

The equivalent load on radial bearings may be calculated using the following equation:

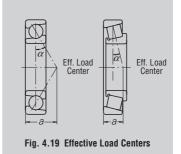
- where P: Equivalent Load (N), {kgf} F_r : Radial load (N), {kgf} F_a : Axial load (N), {kgf} X: Radial load factor
 - Y: Axial load factor

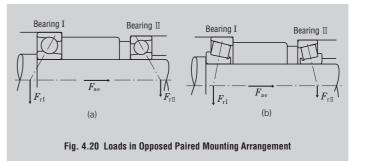
The values of X and Y are listed in the bearing tables. The equivalent radial load for radial roller bearings with $\alpha = 0^{\circ}$ is

$P = F_r$

In general, thrust ball bearings cannot take radial loads, but spherical thrust roller bearings can take some radial loads. In this case, the equivalent load may be calculated using the following equation:

$$P = F_{\rm a} + 1.2F_{\rm r} \cdots (4.44)$$
 where $\frac{F_{\rm r}}{F_{\rm a}} \leq 0.55$


4.4.2 Axial Load Components in Angular Contact Ball Bearings and Tapered Roller Bearings


The effective load center of both angular contact ball bearings and tapered roller bearings is at the point of intersection between the shaft center line and a line representing the load applied on the rolling element by the outer ring, as shown in Fig. 4.19. This effective load center for each bearing is listed in the bearing tables. When radial loads are applied to these types of bearings, a component load is produced in the axial direction. In order to balance this component load, bearings of the same type are used in pairs, placed face-to-face or back-to-back. These axial loads can be calculated using the following equation:

$$F_{ai} = \frac{0.6}{V} F_{\rm r} \cdots (4.45)$$

where F_{ai} : Component load in the axial direction (N), {kgf} F_r : Radial load (N), {kgf} Y: Axial load factor Assume that radial loads $F_{\rm rI}$ and $F_{\rm rII}$ are applied on bearings I and II (Fig. 4.20) respectively and an external axial load $F_{\rm ae}$ is applied as shown. If the axial load factors are $Y_{\rm I}$ and $Y_{\rm II}$ and the radial load factor is X, then the equivalent loads $P_{\rm I}$ and $P_{\rm II}$ may be calculated as follows:

$$\begin{array}{ll} \text{where} \quad F_{ae} + \frac{0.6}{Y_{II}} \, F_{r\,I} \geq \frac{0.6}{Y_{I}} \, F_{r\,I} \\ P_{I} = XF_{r\,I} + Y_{I} \, \left(F_{ae} + \frac{0.6}{Y_{II}} \, F_{r\,II}\right) \\ P_{II} = F_{r\,II} \\ \text{where} \quad F_{ae} + \frac{0.6}{Y_{II}} \, F_{r\,II} < \frac{0.6}{Y_{I}} \, F_{r\,I} \\ P_{I} = F_{r\,I} \\ P_{II} = F_{r\,I} + Y_{II} \left(\frac{0.6}{Y_{II}} \, F_{r\,I} - F_{ae}\right) \\ \end{array} \right\} \ \cdots \cdots \cdots (4.47)$$

4.5 Static Load Ratings and Static Equivalent Loads

4.5.1 Static Load Ratings

When subjected to excessive or strong shock loads, rolling bearings may incur a local permanent deformation of the rolling elements and permanent deformation of the rolling elements and raceway surface if the elastic limit is exceeded. This nonelastic deformation increases in area and depth as load increases. When the load exceeds a certain limit, the smooth operation of the bearing is impeded. The basic static load rating is defined as the static load that produces the following calculated contact stress between the raceway surface and center of the contact area of the rolling element subjected to the maximum stress:

For self-aligning ball bearings	4 600 MPa {469 kgf/mm²}
For other ball bearings	4 200 MPa {428 kgf/mm²}
For roller bearings	4 000 MPa {408 kgf/mm²}

In this most heavily stressed contact area, the sum of the permanent deformation of the rolling element and that of the raceway is nearly 0.0001 times the rolling element diameter. The basic static load rating $C_{\rm o}$ is defined as $C_{\rm or}$ for radial bearings and $C_{\rm oa}$ for thrust bearings in the bearing tables.

4.5.2 Static Equivalent Loads

The static equivalent load is a hypothetical load that produces a contact stress equal to the above maximum stress in the area of contact between the most heavily stressed rolling element and bearing is stationary (including very slow rotation or oscillation). The static radial load passing through the bearing center is taken as the static equivalent load for radial bearings, while the static axial load in the direction coinciding with the central axis is taken as the static equivalent load for thrust bearings.

(a) Static equivalent load on radial bearings

The greater of the two values calculated from the following equations should be adopted as the static equivalent load on radial bearings:

-	$X_{\rm o}F_{\rm r} + Y_{\rm o}F_{\rm a}$
0	$P_{\rm r}$ (4.40) $P_{\rm o}$: Static equivalent load (N), {kgf} $F_{\rm r}$: Radial load (N), {kgf} $F_{\rm a}$: Axial load (N), {kgf} $X_{\rm o}$: Static radial load factor $Y_{\rm o}$: Static axial load factor

(b) Static equivalent load on thrust bearings

where P_{o} : Static equivalent load (N), {kgf} α : Contact angle

When $F_a < X_o F_r$, this equation becomes less accurate. The values of X_o and Y_o for Equations (4.47) and (4.49) are listed in the bearing tables. The static equivalent load for thrust roller bearings when

 $\alpha = 90^\circ$ is $P_0 = F_a$

4.5.3 Permissible Static Load Factor

The permissible static equivalent load on bearings varies depending on the basic static load rating, application, and operating conditions. The permissible static load factor f_s is a safety factor that is applied to the basic static load rating, and it is

defined by the ratio in Equation (4.50). The generally recommended values of f_s are listed in Table 4.9.

 $f_{\rm s} = \frac{C_{\rm o}}{P_{\rm o}} \quad \cdots \qquad (4.50)$

where C_0 : Basic static load rating (N), {kgf} P_0 : Static equivalent load (N), {kgf}

For spherical thrust roller bearings, the value of $f_{\rm s}$ should be greater than 4.

Table 4.9 Values of Permissible Static Load Factor $f_{
m s}$

Operating Conditions	Lower Limit of $f_{ m s}$		
Operating Conditions	Ball Bearings	Roller Bearings	
Low-noise applications	2	3	
Bearings subjected to vibration and shock loads	1.5	3	
Standard operating conditions	1	1.5	

4.6 Example Bearing Calculations

(Example 1)

Obtain the fatigue life factor $f_{\rm h}$ of single-row deep groove ball bearing **6208** when it is used under a radial load $F_{\rm r}$ =2 500 N and speed n =900 min⁻¹.

The basic load rating C_r of **6208** is 29 100 N (Bearing Table, Page C024). Since only a radial load is applied, the equivalent load *P* may be obtained as follows:

 $P = F_{\rm r} = 2500 {\rm N}$

Since the speed is $n = 900 \text{ min}^{-1}$, the speed factor f_n can be obtained from the equation in Table 4.2 (Page A034) or Fig. 4.3 (Page A036).

$f_{\rm n} = 0.333$

The fatigue life factor $f_{\rm h}$, under these conditions, can be calculated as follows:

 $f_{\rm h} = f_{\rm n} \frac{C_{\rm r}}{P} = 0.333 \times \frac{29\,100}{2\,500} = 3.88$

This value is suitable for industrial applications, air conditioners in regular use, etc., and according to the equation in Table 4.2 or Fig. 4.4 (Page A036), this corresponds to approximately 29 000 hours of service life.

(Example 2)

Select a single-row deep groove ball bearing with a bore diameter of 50 mm and outside diameter under 100 mm that satisfies the following conditions: Radial load F_r = 3 000 N

Speed $n = 1900 \text{ min}^-$

```
Basic rating life L_{\rm h} \ge 10\,000 h
```

The fatigue life factor f_h of ball bearings with a rating fatigue life longer than 10 000 hours is $f_h \ge 2.72$. Because $f_n = 0.26$, $P = F_r = 3000$ N.

$$f_{\rm h} = f_{\rm n} \frac{C_{\rm r}}{P} = 0.26 \times \frac{C_{\rm r}}{3\,000} \ge 2.72$$

Therefore,
$$C_{\rm r} \ge 2.72 \times \frac{3\ 000}{0.26} = 31\ 380\ {\rm N}$$

From the data listed in the bearing table on Page C026, **6210** should be selected, as it satisfies the above conditions.

(Example 3)

Obtain C_r/P or fatigue life factor f_h when an axial load F_a =1 000 N is added to the conditions of (Example 1)

When the radial load F_r and axial load F_a are applied on single-row deep groove ball bearing **6208**, the dynamic equivalent load P should be calculated in accordance with the following procedure:

Obtain the radial load factor X, axial load factor Y, and constant e, depending on the magnitude of f_0F_a/C_{or} , from the Dynamic Equivalent Load Table above the Bearing Table on Page C025.

The basic static load rating $C_{\rm or}$ of ball bearing **6208** is 17 900 N (Page C024)

 $f_{\rm o}F_{\rm a}/C_{\rm or} = 14.0 \times 1\ 000/17\ 900 = 0.782$ $e \doteq 0.26$

and $F_a / F_r = 1\ 000/2\ 500 = 0.4 > e$

X = 0.56

Y = 1.67 (the value of Y is obtained by linear interpolation)

Therefore, the dynamic equivalent load *P* is

 $P = XF_r + YF_a$ = 0.56 × 2 500 + 1.67 × 1 000 = 3 070 N $\frac{C_r}{P} = \frac{29\ 100}{3\ 070} = 9.48$ $f_h = f_n\ \frac{C_r}{P} = 0.333 \times \frac{29\ 100}{3\ 070} = 3.16$

This value of $f_{\rm h}$ corresponds approximately to 15 800 hours of service life for ball bearings.

(Example 4)

Select a Series 231 spherical roller bearing that satisfies the following conditions: Radial load F_r = 45 000 N Axial load F_a = 8 000 N Speed n = 500 min⁻¹ Basic rating life $L_h \ge$ 30 000 h

The value of the fatigue life factor f_h which makes $L_h \ge 30\ 000\ h$ is greater than 3.45, according to Fig. 4.4 (Page A036).

The dynamic equivalent load P of spherical roller bearings is as follows:

when $F_{\rm a} / F_{\rm r} \leq e$

 $P = XF_r + YX_a = F_r + Y_3F_a$

when $F_{\rm a}/F_{\rm r} > e$

 $P = XF_{\rm r} + YF_{\rm a} = 0.67 F_{\rm r} + Y_2F_{\rm a}$

 $F_{\rm a}$ / $F_{\rm r}$ = 8 000/45 000 = 0.18

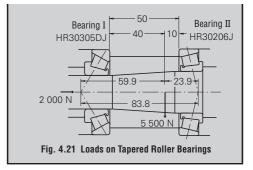
We can see in the bearing table that the value of e is about 0.3 and that of $Y_{\rm 3}$ is about 2.2 for Series 231 bearings.

Therefore, $P = XF_r + YF_a = F_r + Y_3F_a$ = 45 000 + 2.2 × 8 000 = 62 600 N

From the fatigue life factor $f_{\rm h}$, the basic load rating can be obtained as follows:

$$f_{\rm h} = f_{\rm h} \frac{C_{\rm r}}{P} = 0.444 \times \frac{C_{\rm r}}{62\ 600} \ge 3.45$$

Consequently, $C_r \ge 490\ 000\ N$ The smallest Series 231 spherical roller bearing satisfying this value of C_r is **23126CE4** ($C_r = 505\ 000\ N$). Once the bearing is determined, substitute the value of


 Y_3 in the equation and obtain the value of P.

```
P = F_{\rm r} + Y_3 F_{\rm a} = 45\ 000 + 2.4 \times 8\ 000= 64\ 200\ {\rm N}
```

```
\begin{split} L_{\rm h} &= 500 \left( f_{\rm n} \frac{C_{\rm r}}{P} \right)^{\frac{10}{3}} \\ &= 500 \left( 0.444 \times \frac{505\ 000}{64\ 200} \right)^{\frac{10}{3}} \\ &= 500 \times 3.49^{\frac{10}{3}} \doteqdot 32\ 000\ {\rm h} \end{split}
```

(Example 5)

Assume that tapered roller bearings **HR30305DJ** and **HR30206J** are used in a back-to-back arrangement as shown in Fig. 4.21, and the distance between the outer ring back faces is 50 mm. Calculate the basic rating life of each bearing when radial load $F_{\rm ac}$ =2 000 N are applied to **HR30305DJ** as shown in Fig. 4.21. The speed is 600 min⁻¹.

To distribute the radial load F_r on bearings I and II, the effective load centers for tapered roller bearings must be located. Obtain the effective load center *a* for bearings I and II from the bearing table, then obtain the relative position of the radial load F_r and effective load centers. The result will be as shown in Fig. 4.21. Consequently, the radial load applied on bearings I (**HR30305DJ**) and II (**HR30206J**) can be obtained from the following equations:

$$F_{rI} = 5 \ 500 \times \frac{23.9}{83.8} = 1 \ 569 \ N$$
$$F_{rII} = 5 \ 500 \times \frac{59.9}{83.8} = 3 \ 931 \ N$$

The following values are obtained from data in the Bearing Table:

Bearings	Basic dynamic load rating $C_{\rm r}$ (N)	Axial load factor Y_1	Constant <i>e</i>
Bearing I (HR30305DJ)	38 000	$Y_{\rm I} = 0.73$	0.83
Bearing $\mathbbm{I} \; (\text{HR30206J})$	43 000	$Y_{\rm II}=$ 1.6	0.38

When radial loads are applied on tapered roller bearings, an axial load component is produced and must be considered to obtain the dynamic equivalent radial load (refer to Section 4.4.2, Page A051).

This is obtained by the following:

~ ~

$$\begin{aligned} F_{\rm ae} + \frac{0.6}{Y_{\rm II}} F_{\rm r\,II} &= 2\ 000 + \frac{0.6}{1.6} \times 3\ 931 \\ &= 3\ 474\ {\rm N} \\ \frac{0.6}{Y_{\rm I}} F_{\rm r\,I} &= \frac{0.6}{0.73} \times 1\ 569 = 1\ 290\ {\rm N} \end{aligned}$$

~ ~

Therefore, with this bearing arrangement, the axial load $F_{ae} + \frac{0.6}{Y_{\pi}} F_{rII}$ is applied on bearing I but not on bearing II For bearing I, $F_{r_1} = 1569 \text{ N}$ $F_{a1} = 3474 \text{ N}$ since $F_{a_1} / F_{r_1} = 2.2 > e = 0.83$ the dynamic equivalent load $P_{I} = XF_{rI} + Y_{I}F_{aI}$ $= 0.4 \times 1569 + 0.73 \times 3474$ = 3 164 N The fatigue life factor $f_{\rm h} = f_{\rm n} \frac{C_{\rm r}}{P_{\rm r}}$ $=\frac{0.42\times38\ 000}{3\ 164}=5.04$ and the rating fatigue life $L_{\rm h} = 500 \times 5.04^{\frac{10}{3}}$ = 109 750 h For bearing II since $F_{r_{II}} = 3\,931$ N, $F_{a_{II}} = 0$ the dynamic equivalent load $P_{\rm II} = F_{\rm r\,II} = 3\,931\,{\rm N},$ fatique life factor

$$f_{\rm h} = f_{\rm n} \, \frac{C_{\rm r}}{P_{\rm II}} = \frac{0.42 \times 43\ 000}{3\ 931} = 4.59$$

and rating fatigue life $L_{\rm h} = 500 \times 4.59^{\frac{10}{3}} = 80\ 400\ {\rm h}$ are obtained.

For face-to-face arrangements (DF type), please contact NSK.

(Example 6)

Select a bearing for a speed reducer under the
following conditions:
Operating conditionsRadial load $F_r = 245\ 000\ N$ Axial load $F_a = 49\ 000\ N$ Speed $n = 500\ min^{-1}$ Size limitation
Shaft diameter: 300 mm
Housing bore: Less than 500 mm

In this application, heavy loads, shocks, and shaft deflection are expected; therefore, spherical roller bearings are appropriate. The following spherical roller bearings satisfy the

above size limits (refer to Page C284):

d	D	В	Bearing No.	Basic Dynamic Load Rating <i>C</i> r (N)	Constant <i>C</i>	Factor Y_3
300	420	90	23960 CAME4	1 540 000	0.19	3.5
	460	118	23060 CAME4	2 400 000	0.24	2.8
	460	160	24060 CAME4	2 890 000	0.32	2.1
	500	160	23160 CAME4	3 350 000	0.31	2.2
	500	200	24160 CAME4	3 900 000	0.38	1.8

Since $F_{\rm a}$ / $F_{\rm r}$ = 0.20 ${<}e$, the dynamic equivalent load $P\,{\rm is}$

$P = F_{\rm r} + Y_3 F_{\rm a}$

Judging from the fatigue life factor $f_{\rm h}$ in Table 4.1 and example applications (refer to Page A034), a value of $f_{\rm h}$, between 3 and 5 is appropriate.

$$f_{\rm h} = f_{\rm n} \frac{C_{\rm r}}{P} = \frac{0.444 \ C_{\rm r}}{F_{\rm r} + Y_3 F_{\rm a}} = 3 \text{ to } 5$$

Assuming that Y_3 = 2.1, then the necessary basic load rating C_r can be obtained:

 $C_{\rm r} = \frac{(F_{\rm r} + Y_3 F_{\rm a}) \times (3 \text{ to } 5)}{0.444}$

 $=\frac{(245\ 000+2.1\times49\ 000)\times(3\ to\ 5)}{0.444}$

= 2 350 000 to 3 900 000 N

Bearings that satisfy this range are **23060CAME4**, **24060CAME4**, **23160CAME4**, and **24160CAME4**.

4.7 Bearing Type and Allowable Axial Load

4.7.1 Change in Contact Angle of Radial Ball Bearings and Allowable Axial Load

(1) Change in Contact Angle Due to Axial Load

When an axial load acts on a radial ball bearing, the rolling element and raceway develop elastic deformation, resulting in an increase in contact angle and width. When heat generation or seizure occurs, the bearing should be disassembled and checked for a running trace to discover whether there has been a change in contact angle during operation. In this way, it is possible to see whether an abnormal axial load has been sustained.

The relation below reflects axial load on a bearing F_{a} , the load on rolling element Q, and the contact angle α when a load is applied. (see Equations (9.8), (9.9), and (9.10) in Section 9.6.2)

$F_{\rm a} = Z Q \sin \alpha$

 $= KZ D_{w}^{2} \{\sqrt{(\sin\alpha_{0}+h)^{2}+\cos^{2}\alpha_{0}}-1\}^{3/2} \cdot \sin\alpha$ \cdots (4.51) $\alpha = \sin^{-1} \frac{\sin\alpha_{0}+h}{\sqrt{(\sin\alpha_{0}+h)^{2}+\cos^{2}\alpha_{0}}} \cdots$ (4.52) $h = \frac{\delta_{a}}{m_{0}} = \frac{\delta_{a}}{r_{c}+r_{i}-D_{w}}$

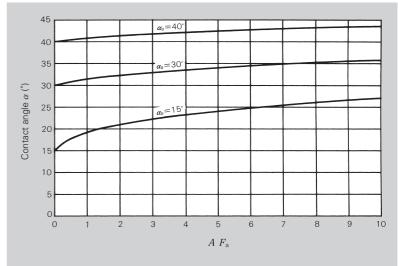
Namely, δ_a refers to the change in Equation (4.52) to determine a contact angle α corresponding to the contact angle known from observation of the raceway. Thus, δ_a and α are introduced into Equation (4.51) to estimate the axial load F_a acting on the bearing. As specifications of the bearing are necessary for calculation, the contact angle α in this case was approximated from the axial load. The basic static load rating C_{α} is expressed by Equation (4.53) for single-row radial ball bearings.

- $C_{0r} = f_0 Z D_w^2 \cos \alpha_0 \cdots (4.53)$ where f_0 : Factor determined from the shape of
- bearing components and applicable stress level

Equation (4.54) is determined from Equations (4.51) and (4.53):

$$\frac{f_0}{C_{0r}} F_a = A F_a$$

$$= K \{\sqrt{(\sin\alpha_0 + h)^2 + \cos^2\alpha_0} - 1\}^{3/2} \cdot \frac{\sin\alpha}{\cos\alpha_0}$$
.....(4.54)


where K: Constant determined from material and design of bearing

In other words, *h* is assumed and contact angle α is determined from Equation (4.52). Then *h* and α are introduced into Equation (4.54) to determine *A F*_a. This relation is used to show the value of *A* for each bore number of angular contact ball bearings in Table 4.14. The relationship between *A F*_a and α is shown in Fig. 4.22.

Example 1

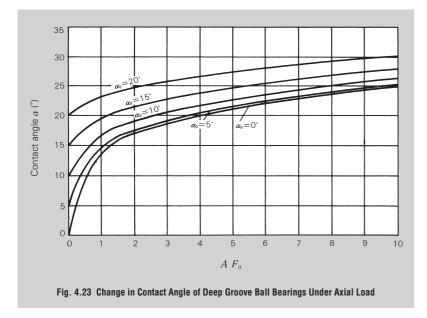
Calculate the change in the contact angle when pure axial load $F_a = 35.0$ kN (50% of basic static load rating) is applied to angular contact ball bearing 7215C.

A = 0.212 as determined from Table 4.10 and $AF_a = 0.212 \times 35.0 = 7.42$ and $\alpha = 26^{\circ}$ according to Fig. 4.22. The initial contact angle of 15° has changed to 26° under axial load.

Fig. 4.22 Change in Contact Angle of Angular Contact Ball Bearings Under Axial Load

Table 4.10 Constant A Value of Angular Contact Ball Bearings

Units: kN⁻¹


Bearing	Series 70 Bearings			Series 72 Bearings			Series 73 Bearings		
Bore No.	15°	30°	40°	15°	30°	40°	15°	30°	40°
05	1.97	2.05	2.31	1.26	1.41	1.59	0.838	0.850	0.961
06	1.45	1.51	1.83	0.878	0.979	1.11	0.642	0.651	0.736
07	1.10	1.15	1.38	0.699	0.719	0.813	0.517	0.528	0.597
08	0.966	1.02	1.22	0.562	0.582	0.658	0.414	0.423	0.478
09	0.799	0.842	1.01	0.494	0.511	0.578	0.309	0.316	0.357
10	0.715	0.757	0.901	0.458	0.477	0.540	0.259	0.265	0.300
11	0.540	0.571	0.681	0.362	0.377	0.426	0.221	0.226	0.255
12	0.512	0.542	0.645	0.293	0.305	0.345	0.191	0.195	0.220
13	0.463	0.493	0.584	0.248	0.260	0.294	0.166	0.170	0.192
14	0.365	0.388	0.460	0.226	0.237	0.268	0.146	0.149	0.169
15	0.348	0.370	-	0.212	0.237	0.268	0.129	0.132	0.149
16	0.284	0.302	0.358	0.190	0.199	0.225	0.115	0.118	0.133
17	0.271	0.288	0.341	0.162	0.169	0.192	0.103	0.106	0.120
18	0.228	0.242	0.287	0.140	0.146	0.165	0.0934	0.0955	0.108
19	0.217	0.242	0.273	0.130	0.136	0.153	0.0847	0.0866	0.0979
20	0.207	0.231	0.261	0.115	0.119	0.134	0.0647	0.0722	0.0816

Values for deep groove ball bearings are similarly shown in Table 4.11 and Fig. 4.23.

Example 2

Calculate the change in the contact angle when a pure axial load $F_a = 24.75$ kN (50% of the basic static load rating) is applied to the deep groove ball bearing 6215. Note here that the radial internal clearance is calculated as the median (0.020 mm) of the normal clearance.

The initial contact angle of 10° is obtained from Fig. 3 on Page C015. A = 0.303 as determined from Table 4.11 and $A F_a = 0.303 \times 24.75 = 7.5$, thus $\alpha = 24^{\circ}$ based on Fig. 4.23.

Table 4.11 Constant A Value of Deep Groove Ball Bearing

Units: kN⁻¹

					UTILS: KIN
Bearing	Series 62 Bearings				
Bore No.	0°	5°	10°	15°	20°
05	1.76	1.77	1.79	1.83	1.88
06	1.22	1.23	1.24	1.27	1.30
07	0.900	0.903	0.914	0.932	0.958
08	0.784	0.787	0.796	0.811	0.834
09	0.705	0.708	0.716	0.730	0.751
10	0.620	0.622	0.630	0.642	0.660
11	0.490	0.492	0.497	0.507	0.521
12	0.397	0.398	0.403	0.411	0.422
13	0.360	0.361	0.365	0.373	0.383
14	0.328	0.329	0.333	0.340	0.349
15	0.298	0.299	0.303	0.309	0.317
16	0.276	0.277	0.280	0.285	0.293
17	0.235	0.236	0.238	0.243	0.250
18	0.202	0.203	0.206	0.210	0.215
19	0.176	0.177	0.179	0.183	0.188
20	0.155	0.156	0.157	0.160	0.165

(2) Allowable Axial Load for a Deep Groove Ball Bearing

The allowable axial load here refers to the limit load at which a contact ellipse is generated between the ball and raceway due to a change in the contact angle when a radial bearing, which is under an axial load, rides over the shoulder of the raceway groove. This is different from the limit value of a static equivalent load P_0 which is determined from the basic static load rating C_0 using the static axial load factor Y_0 . Also note that the contact ellipse may ride over the shoulder even when the axial load on the bearing is below the limit value of P_0 .

The allowable axial load $F_{\rm a\ max}$ of a radial ball bearing can be determined through equations. The contact angle α for $F_{\rm a}$ is determined from the right terms of Equations (4.51) and Equation (4.52), while Q is calculated as follows:

$$Q = \frac{F_{\rm a}}{Z \sin \alpha}$$

 θ of Fig. 4.24 is determined as follows:

$$2a=A_2 \mu \left(\frac{Q}{\Sigma \rho}\right)^{1/3}$$
$$\therefore \theta \doteq \frac{a}{r}$$

Accordingly, the allowable axial load may be determined as the maximum axial load at which the following relation is established.

$\gamma \ge \alpha + \theta$

As the allowable axial load cannot be determined unless the internal specifications of a bearing are known, Fig. 4.25 shows the calculated results of allowable axial load for various deep groove radial ball bearings.

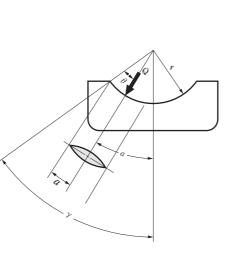
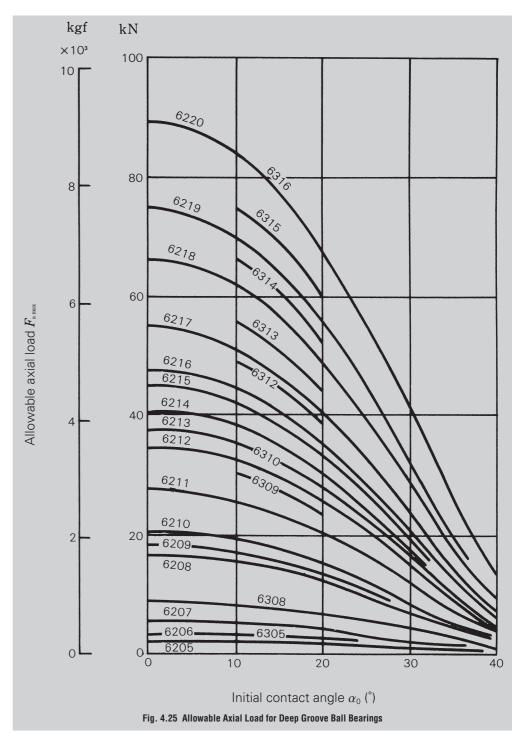



Fig. 4.24 Contact Ellipse

4.7.2 Allowable Axial Load (Rib Breakdown Strength) for Cylindrical Roller Bearings

The inner and outer rings of cylindrical bearings with loose or fixed ribs can receive an axial load when operating under radial load. This allowable axial load is limited by the heat generated from sliding of the roller and rib faces, seizing, rib strength, and so on. Fig 4.26 shows the allowable axial load (a load that considers heat generation between the end faces of the rollers and rib faces) when applied continuously to a Diameter Series 3 cylindrical roller bearing with grease or oil lubrication.

Grease lubrication (Empirical equation)

Oil lubrication (Empirical equation)

- where C_A : Allowable axial load (N), {kgf}
 - *d* : Bearing bore diameter (mm) *n* : Bearing speed (min⁻¹)
 - *n*: Bearing speed (min *f*: Load factor
 - k : Dimensional factor

As Equations (4.55) and (4.56) do not consider rib strength, please consult with NSK regarding rib strength.

To enable a cylindrical roller bearing to maintain stable axial load capacity, note the following concerning the bearing and its surroundings:

- Ensure that radial load is applied and that the magnitude of the radial load is at least 2.5 times that of the axial load.
- Maintain sufficient lubricant between the roller end face and rib face.
- Use a lubricant with an additive for extreme pressures.
- Provide sufficient run-in time.
- Confirm that bearing mounting accuracy is good.
 Don't use a bearing with an uppercention of the second second
- Don' t use a bearing with an unnecessarily large internal clearance.

Moreover, take extra care and consideration for each bearing's lubrication, cooling method, and so on when:

- \odot Bearing speed is less than 200 min⁻¹,
- Bearing speed exceeds 50 % of the allowable speed in the bearing tables, or
- Bearing bore diameter exceeds 200 mm.

Please contact NSK for guidance in such cases.

f: Load Factor

	<i>f</i> value
Continuous Load	1
Intermittent Load	2
Short-Term Load	3

k: Dimensional Factor

	k value
Series 2 Bearing Diameter	0.75
Series 3 Bearing Diameter	1
Series 4 Bearing Diameter	1.2

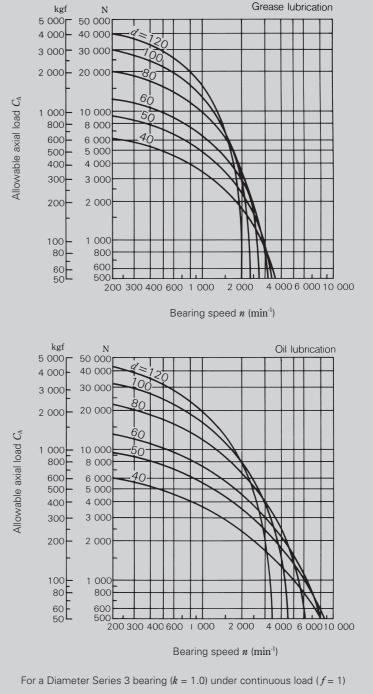
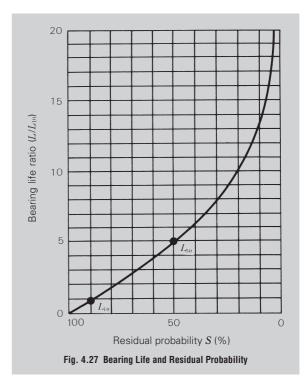


Fig. 4.26 Allowable Axial Load for a Cylindrical Roller Bearing

4.8 Technical Data 4.8.1 Fatigue Life and Reliability

Where any part failure may result in damage to the entire machine and repair of damage is impossible, as in aircraft, satellite, or rocket applications, greatly increased reliability is demanded of each component. Recently, such high reliability requirements have been applied more generally to durable consumer goods and may also be utilized to achieve effective preventive maintenance of machines and equipment.

The rating fatigue life of a rolling bearing is the gross number of revolutions or the gross rotating period (when the rotating speed is constant) that 90 % of a group of similar bearings running individually under similar conditions can rotate without suffering material damage due to rolling fatigue. In other words, fatigue life is normally defined at 90 % reliability. There are other ways to describe the expected life. For example, an average value is frequently employed to describe the lifespan of human beings. However, if an average were used for bearings, then too many bearings would fail before the average life value was reached. On the other hand, if a low or minimum value was used as a criterion, then too many bearings would have a life much longer than the set value. With these considerations in mind, a 90 % value was chosen for common practice. A value of 95 % could have been taken as the statistical reliability, but the slightly looser reliability of 90 % was taken from a practical and economical viewpoint. A 90 % reliability however is not acceptable for aircraft parts, computers, or communication systems, and a 99 % or even 99.9 % reliability may be required in some of these cases.


The fatigue life distribution when a group of similar bearings are operated individually under similar conditions is shown in Fig. 4.27. The Weibull equation can be used to describe the fatigue life distribution within a damage ratio of 10 to 60 % (residual probability of 90 to 40 %). At a damage ratio of 10 % or less (residual probability of 90 % or more) however, the rolling fatigue life becomes longer than the theoretical curve of the Weibull distribution, as shown in Fig. 4.28. This is a conclusion drawn from the life test of numerous, widely-varying bearings and an analysis of collected data.

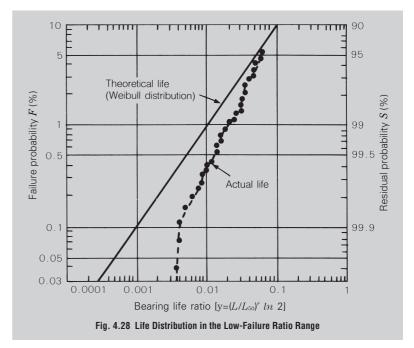

When bearing life with a failure ratio of 10 % or less (for example, the 95 % life or 98 % life) is to be considered on the basis of the above concept, the reliability factor a_1 shown in Table 4.12 is used to check the life. Assume here that the 98 % life L_2 is to be calculated for a bearing whose rating fatigue life L_{10} was calculated at 10 000 hours. The life can be calculated as $L_2 = 0.37 \times L_{10} = 3700$ hours. In this manner, the reliability of the bearing life can be matched to the equipment and difficulty of inspection and disassembly.

Table 4.12 Reliability Factor

Reliability, %	90	95	96	97	98	99
Life, L	$L_{^{10}}$ rating life	L_5	L_4	L_3	L_2	L_1
Reliability Factor, <i>a</i> ₁	1	0.64	0.55	0.47	0.37	0.25

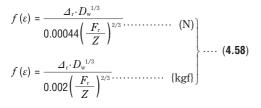
Apart from rolling fatigue, factors such as lubrication, wear, sound, and accuracy govern the durability of a bearing. These factors must be taken into account, but the endurance limit of these factors varies depending on application and conditions.

SELECTION OF BEARING SIZE

4.8.2 Radial Clearance and Fatigue Life

As shown in the catalog and elsewhere, the fatigue life calculation equation of rolling bearings is as follows:

$$L = \left(\frac{C}{P}\right)^{p} \cdots (4.57)$$


where L: Rating fatigue life (10⁶ rev) C: Basic dynamic load rating (N), {kgf} P: Dynamic equivalent load (N), {kgf} p: Index Ball bearing p=3.

Roller bearing
$$p = \frac{10}{3}$$

The rating fatigue life L for a radial bearing in this case requires the load distribution in the bearing corresponds to the state with the load factor $\varepsilon = 0.5$ (Fig. 4.29).

The load distribution with $\varepsilon = 0.5$ is obtained when the bearing radial internal clearance is zero. In this sense, the normal fatigue life calculation is intended to obtain a value when the clearance is zero. When the effect of the radial clearance is taken into account, the bearing fatigue life can be calculated. Equations (4.58) and (4.59) can be established between the bearing radial clearance Δ_r and a function $f(\varepsilon)$ of load factor ε :

For deep groove ball bearings:

$f(\varepsilon) = \frac{\Delta_r \cdot L_{we}^{0.8}}{0.000077 \left(\frac{F_r}{Z \cdot i}\right)^{0.9}} \dots $	
$f(\varepsilon) = \frac{\Delta_{\rm r} \cdot L_{\rm we}^{0.8}}{0.0006 \left(\frac{F_{\rm r}}{Z \cdot i}\right)^{0.9}} \qquad \{\rm kgf\}$	···· (4.59)

where Δ_r : Radial clearance (mm) $F_{\rm r}$: Radial load (N), {kgf}

For cylindrical roller bearings:

- Z : Number of rolling elements
- *i* : No. of rows of rolling elements
- $D_{\rm w}$: Ball diameter (mm)
- L_{we} : Effective roller length (mm)
- L_{ε} : Life with clearance of Δ_{r}
- L : Life with zero clearance, obtained from Equation (4.57)

The relationship between load factor ε and $f(\varepsilon)$ and the life ratio L_{ϵ}/L , when radial internal clearance Δ_r exists is shown in Table 4.13.

Fig. 4.30 shows the relationship between the radial clearance and bearing fatigue life in example 6208 and NU208 bearings.

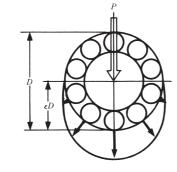
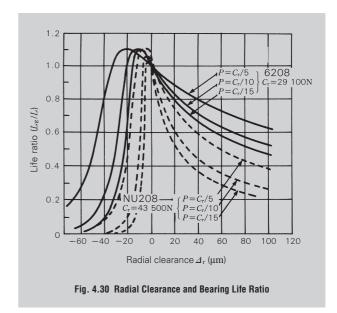



Fig. 4.29 Load Distribution With $\varepsilon = 0.5$

Table 4.13 ε and $f(\varepsilon)$, L_{ε}/L

	Deep Groove	Ball Bearing	Cylindrical R	oller Bearing
ε	$f(\varepsilon)$	$\frac{L_{\varepsilon}}{L}$	$f(\varepsilon)$	$\frac{L_{\varepsilon}}{L}$
0.1	33.713	0.294	51.315	0.220
0.2	10.221	0.546	14.500	0.469
0.3	4.045	0.737	5.539	0.691
0.4	1.408	0.889	1.887	0.870
0.5	0	1.0	0	1.0
0.6	- 0.859	1.069	- 1.133	1.075
0.7	- 1.438	1.098	- 1.897	1.096
0.8	- 1.862	1.094	- 2.455	1.065
0.9	- 2.195	1.041	- 2.929	0.968
1.0	- 2.489	0.948	- 3.453	0.805
1.25	- 3.207	0.605	- 4.934	0.378
1.5	- 3.877	0.371	- 6.387	0.196
1.67	- 4.283	0.276	- 7.335	0.133
1.8	- 4.596	0.221	- 8.082	0.100
2.0	- 5.052	0.159	- 9.187	0.067
2.5	- 6.114	0.078	-11.904	0.029
3	- 7.092	0.043	-14.570	0.015
4	- 8.874	0.017	-19.721	0.005
5	-10.489	0.008	-24.903	0.002
10	-17.148	0.001	-48.395	0.0002

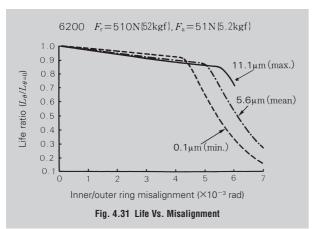
4.8.3 Misalignment of Inner/Outer Rings and Fatigue Life of Deep Groove Ball Bearings

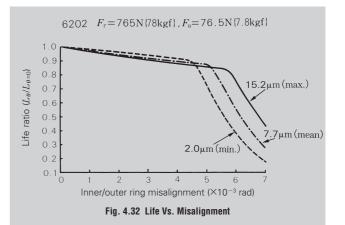
A rolling bearing is manufactured with high accuracy, and careful attention to machining and assembly accuracies of the surrounding shafts and housing is critical for this accuracy is to be maintained. In practice however, the machining accuracy of parts around the bearing is limited, and bearings are subject to misalignment of inner/outer rings caused by the shaft deflection under external load.

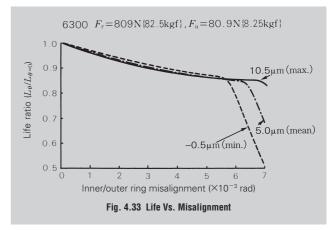
The allowable misalignment is generally 0.0006 - 0.003 rad (2' to 10') but this varies depending on the size of the deep groove ball bearing, internal clearance during operation, and load.

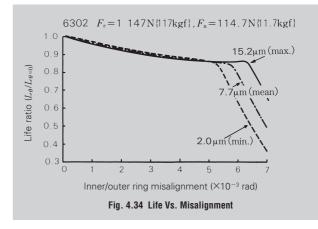
This section introduces the relationship between the misalignment of inner/outer rings and fatigue life. Four Series 62 and 63 deep groove ball bearings of different sizes were selected as examples.

Assume the fatigue life without misalignment as $L_{\theta^{-0}}$ and the fatigue life with misalignment as L_{θ} . The effect of the misalignment on the fatigue life may be found by calculating $L_{\theta}/L_{\theta^{-0}}$. Results are shown in Figs. 4.31 to 4.34.


To represent ordinary running conditions in calculations, radial load F_r (N) {kgf} and axial load F_a (N) {kgf} were assumed to be approximately 10 %


(normal load) and 1 % (light preload) of the dynamic load rating C_r (N) {kgf} respectively. Normal radial clearance was used and the shaft fit was set to around j5. Decrease of the internal clearance due to expansion of the inner ring was also taken into account.

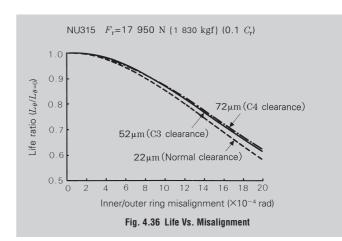

Moreover, assuming that the temperature difference between the inner and outer rings was 5 °C during operation, inner/outer ring misalignment, $L_{\theta}/L_{\theta=0}$ was calculated for the maximum, minimum, and mean effective clearances.

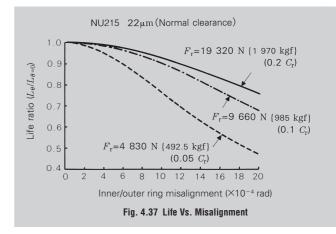

As shown in Figs. 4.31 to 4.34, degradation of the fatigue life is limited to 5 to 10 % or less when the misalignment ranges from 0.0006 to 0.003 rad (2' to 10'), thus not presenting much of a problem.

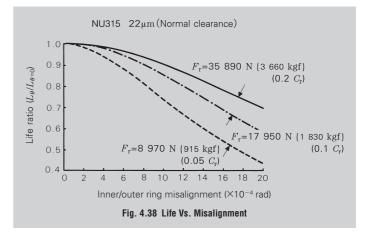
When misalignment exceeds a certain limit however, the fatigue life degrades rapidly as shown in the figures; therefore, pay careful attention to this matter. When the clearance is small, not much effect is observed as long as misalignment is also small, as shown in the figures; however, life decreases substantially when misalignment increases. As previously mentioned, aim to minimize mounting error as much as possible.

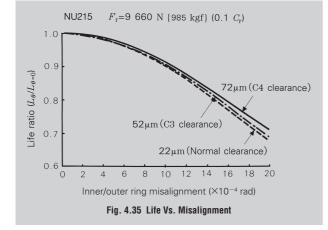
4.8.4 Misalignment of Inner/Outer Rings and Fatigue Life of Cylindrical Roller Bearings

When a shaft supported by rolling bearings is deflected or there is some inaccuracy in a shoulder, misalignment arises between the inner and outer rings of the bearings, thereby lowering their fatigue life. The degree of degradation depends on bearing type, interior design, radial internal clearance, and magnitude of load during operation.

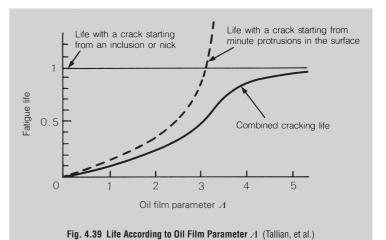

The relationship between the misalignment of inner/ outer rings and fatigue life was determined with standard NU215 and NU315 cylindrical roller bearings, as shown in Figs. 4.35 to 4.38.

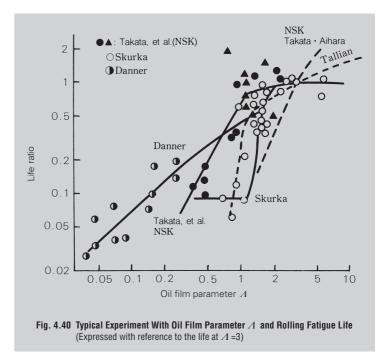

In these figures, the horizontal axis shows the misalignment of inner/outer rings (rad) while the vertical axis shows the fatigue life ratio $L_{\theta}/L_{\theta=0}$. The fatigue life without misalignment is $L_{\theta=0}$ and the fatigue life with misalignment is L_{θ} .


Figs. 4.35 and 4.36 show the life ratio for bearings under constant load (10 % of basic dynamic load rating C_r of a bearing) when the internal clearance is normal, C3, or C4. Figs. 4.37 and 4.38 show the life ratio for bearings with constant clearance (normal clearance) when the load is 5 %, 10 %, and 20 % of the basic dynamic load rating C_r .


Note that the median effective clearance in these examples was determined using m5/H7 fits and a temperature difference of 5°C between the inner and outer rings.

The fatigue life ratio for the clearance and load shows the same trend as in the case of other cylindrical roller bearings; however, the life ratio itself differs among bearing series and dimensions, with life degradation rapid in Series 22 and 23 bearings (wide type). Use of a specially designed bearing is advised when considerable misalignment is expected during application.


4.8.5 Oil Film Parameters and Rolling Fatigue Life


As evidenced by numerous experiments and experiences, the rolling fatigue life of rolling bearings is closely related to lubrication.

The rolling fatigue life is expressed by the maximum number of rotations that a bearing can endure until the raceway or rolling surface of a bearing develops fatigue in the material resulting in flaking of the surface due to cyclic stress. Such flaking begins with either microscopic non-uniform portions (such as nonmetallic inclusions or cavities) in the material or with microscopic defects in the material surface (such as extremely small cracks, surface damage, or dents caused by contact between extremely small projections in the raceway or rolling surface). The former flaking is called subsurface-originating flaking.

The oil film parameter Λ , which is the ratio between the resultant oil film thickness and surface roughness, expresses whether or not the lubrication at the rolling contact surface is satisfactory. The effect of the oil film grows with increasing Λ . Namely, when Λ is large (around 3 in general), surface-originating flaking due to contact between extremely small projections in the surface is less likely to occur. If the surface is free from defects (flaws, dents, etc.), the life is determined mainly by subsurface-originating flaking. On the other hand, a decrease in Λ tends to cause surfaceoriginating flaking, resulting in degradation of the bearing's life. This state is shown in Fig. 4.39. NSK has performed life experiments with about 370 bearings within the range of $\Lambda = 0.3-3$ and with different lubricants and bearing materials (\bigcirc and \blacktriangle in Fig. 4.40). Fig. 4.40 shows a summary of the principal experiments reported until now. As is evident in the figures, life decreases rapidly at around $\Lambda \doteq 1$ when compared with life values at around $\Lambda = 3-4$ where life changes at a slower rate. Life becomes about 1/10 or less at $\Lambda \leq 0.5$ due to severe surface-originating flaking.

Accordingly, to extend the fatigue life of rolling bearings, increase the oil film parameter (ideally to a value above 3) by improving lubrication conditions.

4.8.6 EHL Oil Film Parameter Calculation Diagram

Lubrication of rolling bearings can be expressed by the theory of elastohydrodynamic lubrication (EHL). Introduced below is a method to determine the oil film parameter (oil film to surface roughness ratio), the most critical component in EHL.

(1) Oil Film Parameter

The raceway surfaces and rolling surfaces of a bearing are extremely smooth, but have fine irregularities when viewed through a microscope. As the EHL oil film thickness is in the same order as the surface roughness. lubrication conditions cannot be discussed without considering this surface roughness. For example, given a particular mean oil film thickness, there are two conditions that may occur depending on the surface roughness. One consists of complete separation of the two surfaces by means of the oil film (Fig. 4.41 (a)). The other consists of metal contact between surface projections (Fig. 4.41 (b)). The degradation of lubrication and surface damage is attributed to case (b). The symbol lambda (Λ) represents the ratio between the oil film thickness and roughness. It is widely employed as the oil film parameter in the study and application of EHL.

- $\Lambda = h/\sigma \quad (4.60)$
- where h: EHL oil film thickness σ : Combined roughness $(\sqrt{\sigma_1^2 + \sigma_2^2})$
 - σ_1, σ_2 : Root mean square (rms) roughness of each contact surface

The oil film parameter may be correlated to the formation of the oil film, and the degree of lubrication can be divided into three zones as shown in Fig. 4.42.

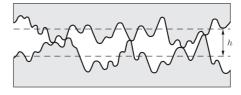
(2) Oil Film Parameter Calculation Diagram

The **Dowson-Higginson** minimum oil film thickness equation shown below is used for figures:

$$H_{\min} = 2.65 \frac{G^{0.54} U^{0.7}}{W^{0.13}} \cdots (4.61)$$

Use the oil film thickness that reflects the inner ring under maximum rolling element load (where thickness is minimum).

Equation (4.61) can be expressed by grouping variables as follows: (R) for speed, (A) for viscosity, (F) for load, and (J) for bearing technical specifications, with t as a constant:


R and *A* may be quantities not dependent on the bearing. When the load *P* is assumed to be between 98 N {10 kgf} and 98 kN {10 tf}, *F* changes by 2.54 times as $F_{\infty} P^{-0.13}$. Since the actual load is usually determined from bearing size however, such change may be limited to 20 to 30 %. As a result, *F* is handled together with term *J* [*F* = *F* (*J*)]. Traditional Equation (4.62) can therefore be grouped as shown below:

 $\Lambda = T \cdot R \cdot A \cdot D \quad (4.63)$

- where T: Factor determined by the bearing Type R: Factor related to **R**otation speed A: Factor related to viscosity (viscosity grade α : Alpha)
 - D : Factor related to bearing **D**imensions

(a) Good roughness

(b) High roughness

Fig. 4.41 Oil Film and Surface Roughness

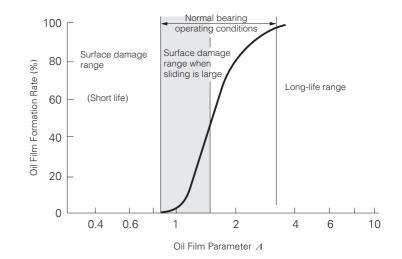


Fig. 4.42 Effect of Oil Film on Bearing Performance

The vitally important oil film parameter Λ is expressed by a simplified equation shown below. The fatigue life of rolling bearings becomes shorter when Λ is smaller. In the equation $A = T \cdot R \cdot A \cdot D$ variables include A for oil viscosity η_0 (mPa · s, {cp}), R for speed n (min⁻¹), and D for bearing bore diameter d (mm). The calculation procedure is described below. (i) Determine the value of T from the bearing type (Table 4 14)

(Table 4.14).

(ii) Determine the *R* value for *n* (min⁻¹) from Fig. 4.43. (iii) Determine A from the absolute viscosity (mPa \cdot s, $\{cp\}$) and kind of oil in Fig. 4.44.

Generally, the kinematic viscosity ν_0 (mm²/s, {cSt}) is used and conversion is made as follows:

 ρ refers to oil density (g/cm³) and uses the approximate values shown below:

100

R З

2

0.7

0.5

0.3

0.2

20

50 100

500 1 000

5000

10 000

100 000

•	Mineral	oil	$\rho =$	0.85

- Silicon oil $\rho = 1.0$
- Diester oil $\rho = 0.9$

When the mineral oil could be naphthene or paraffin, use the paraffin curve shown in Fig. 4.44. (iv) Determine the value of D from the Diameter Series and bore diameter d (mm) in Fig. 4.45. (v) The product of the above values is used as the oil film parameter.

Table 4.14 T Value

Bearing Type	T Value
Ball bearing	1.5
Cylindrical roller bearing	1.0
Tapered roller bearing	1.1
Spherical roller bearing	0.8

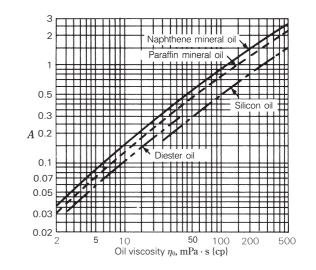


Fig. 4.44 Lubricant Viscosity A

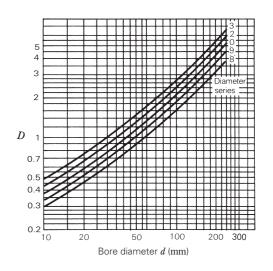


Fig. 4.45 Bearing Specifications D

Speed n (min⁻¹)

 $\ensuremath{\mathsf{Example EHL}}$ oil film parameter calculations are described below:

Example 1

Determine the oil film parameter when deep groove ball bearing 6312 is operated with paraffin mineral oil ($\eta_0 = 30 \text{ mPa} \cdot \text{s}, \{\text{cp}\}$) at a speed of $n = 1000 \text{ min}^{-1}$.

Solution

d = 60 mm and D = 130 mm from the bearing catalog. T = 1.5 from Table 4.18 R = 3.0 from Fig. 4.43 A = 0.31 from Fig. 4.44 D = 1.76 from Fig. 4.45 Accordingly, A = 2.5

Example 2

Determine the oil film parameter when cylindrical roller bearing NU240 is operated with paraffin mineral oil ($\eta_0 = 10 \text{ mPa} \cdot \text{s}, \{\text{cp}\}$) at a speed of $n = 2500 \text{ min}^{-1}$.

Solution

 $\begin{array}{l} d = 200 \mbox{ mm and } D = 360 \mbox{ mm from the bearing catalog.} \\ T = 1.0 \mbox{ from Table 4.18} \\ R = 5.7 \mbox{ from Fig. 4.43} \\ A = 0.13 \mbox{ from Fig. 4.44} \\ D = 4.8 \mbox{ from Fig. 4.45} \\ \mbox{ Accordingly, } \varLambda = 3.6 \end{array}$

(3) Effects of Oil Shortage and Shearing Heat Generation

The oil film parameter obtained above is applicable when the contact inlet is fully flooded with oil and the temperature at the inlet is constant (isothermal). However, these conditions may not be satisfied depending on lubrication and operating conditions. One such condition is called starvation, and in this case, the actual oil film parameter may become smaller than that determined by Equation (4.64). Starvation may occur if lubrication becomes limited. In this condition, the guideline for adjusting the oil film parameter is 50 to 70 % of the value obtained from Equation (4.64). Another effect is the localized rise of oil temperature in the contact inlet due to heavy shearing during highspeed operation, resulting in a decrease of oil viscosity. In this case, the oil film parameter becomes smaller than the theoretical isothermal value. The effect of shearing heat generation was analyzed by Murch and Wilson, who established a decrease factor for the oil film parameter. An approximation using the viscosity and speed (pitch diameter of rolling element set $D_{pw} \times$ rotating speed per minute *n*) is shown in Fig. 4.46. By multiplying the oil film parameter determined in the previous section by this decrease factor *Hi*, an oil film parameter considering the shearing heat generation is obtained:

 $\Lambda = Hi \cdot T \cdot R \cdot A \cdot D \quad \dots \quad (4.65)$

Note that the average of the bore and outside diameters of the bearings may be used as the pitch diameter D_{pw} (d_m) of the set of rolling elements.

Conditions for the calculation of Example 1 include $d_m n = 9.5 \times 10^4$ and $\eta_0 = 30$ mPa·s, {cp} and *Hi* nearly equivalent to 1, as evident from Fig. 4.46. Shearing heat generation therefore has almost no effect. Conditions for Example 2 are $d_m n = 7 \times 10^5$ and $\eta_0 = 10$ mPa·s, {cp} and *Hi* = 0.76, meaning that the oil film parameter is smaller by about 25%. Accordingly, Λ is actually 2.7, not 3.6.

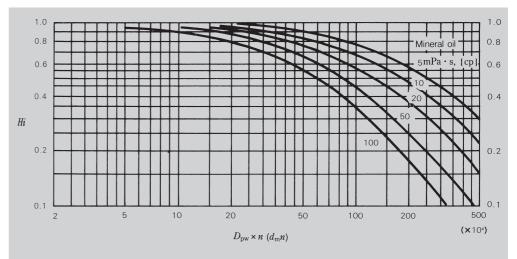


Fig. 4.46 Decrease of Oil Film Thickness Hi Due to Shearing Heat Generation

(1) Calculation of Loads on Spur, Helical, and Double-Helical Gears

Since they are both mechanical elements, there is an extremely close relationship between gears and rolling bearings. Gear units, which are widely used in machines, are almost always used with bearings. Rating life calculation and selection of bearings to be used in gear units are based on the load at the gear meshing point.

The load at the gear meshing point is calculated as follows:

Spur Gear:

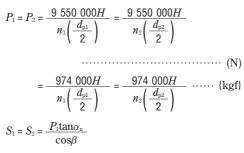
$$P_{1} = P_{2} = \frac{9\ 550\ 000H}{n_{1}\left(\frac{d_{p_{1}}}{2}\right)} = \frac{9\ 550\ 000H}{n_{2}\left(\frac{d_{p_{2}}}{2}\right)}$$

$$\cdots$$
(N)
$$= \frac{974\ 000H}{n_{1}\left(\frac{d_{p_{1}}}{2}\right)} = \frac{974\ 000H}{n_{2}\left(\frac{d_{p_{2}}}{2}\right)}$$
(N)

 $S_1 = S_2 = P_1 \tan \alpha$

The magnitudes of forces P_2 and S_2 applied to the driven gear are the same as P_1 and S_1 respectively, but the direction is opposite.

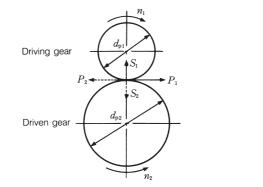
Helical Gear:

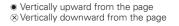

$P_{1} = P_{2} = \frac{9\ 550\ 000H}{n_{1}\left(\frac{d_{p1}}{2}\right)} = \frac{9\ 550\ 000H}{n_{2}\left(\frac{d_{p2}}{2}\right)}$ \cdots (N) $= \frac{974\ 000H}{n_{1}\left(\frac{d_{p1}}{2}\right)} = \frac{974\ 000H}{n_{2}\left(\frac{d_{p2}}{2}\right)}$ (N)

 $S_1 = S_2 = \frac{P_1 \tan \alpha_n}{\cos \beta}$

 $T_1 = T_2 = P_1 \tan\beta$

The magnitudes of the forces P_2 , S_2 , and T_2 applied to the driven gear are the same as P_1 , S_1 , and T_1 respectively, but the direction is opposite.

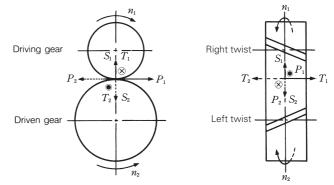

Double-Helical Gear:



where P: Tangential force (N), {kgf} S: Separating force (N), {kgf} T: Thrust (N), {kgf} H: Transmitted power (kW) n: Speed (min⁻¹) d_p : Pitch diameter (mm) α : Gear pressure angle α_n : Gear normal pressure angle β : Twist angle Subscript 1: Driving gear

Subscript 2: Driven gear

In the case of double-helical gears, thrust of the helical gears offsets each other and thus only tangential and separating forces act. For the directions of tangential, separating, and thrust forces, please refer to Figs. 4.47 and 4.48.



X

 $P_2 \bullet S_2$

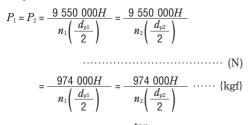
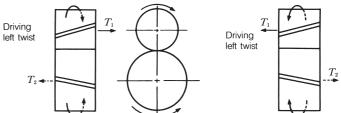

Vertically upward from the page
 Vertically downward from the page

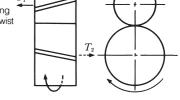
Fig. 4.48 Helical Gear

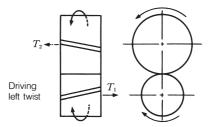
The thrust direction of the helical gear varies depending on the gear running direction, gear twist direction, and whether the gear is driving or driven. The directions are as follows:

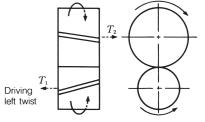
The force on the bearing is determined as follows:

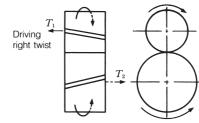
Tangential force:

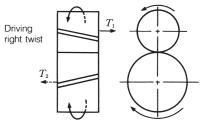


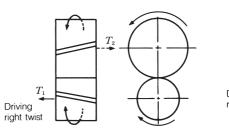

Separating force: $S_1 = S_2 = P_1 \frac{\tan \alpha_n}{\cos \beta}$


Thrust: $T_1 = T_2 = P_1 \cdot \tan\beta$


The same method can be applied to bearings C and D.


Table 4.15			
Load Classification		Bearing A	Bearing B
Radial Load	From P_1	$P_{\rm A} = \frac{{\rm b}}{{\rm a} + {\rm b}} P_{\rm 1} \otimes$	$P_{\rm B} = \frac{a}{a+b} P_1 \otimes$
	From S_1	$S_{A} = \frac{b}{a+b}S_{1}$ †	$S_{\rm B} = \frac{a}{a+b} S_1$ \uparrow
	From T_1	$U_{\rm A} = \frac{d_{\rm p1}/2}{{\rm a} + {\rm b}} T_1 \clubsuit$	$U_{\rm B} = \frac{d_{\rm pl}/2}{{\rm a} + {\rm b}} T_1 \clubsuit$
Combined Radial Load		$F_{\rm rA} = \sqrt{P_{\rm A}^2 + (S_{\rm A} + U_{\rm A})^2}$	$F_{\rm rB} = \sqrt{P_{\rm B}^2 + (S_{\rm B} - U_{\rm B})^2}$
Axial Load $F_a = T_1$			$=T_1$
Load directions shown reference the left side of Fig. 4.49.			





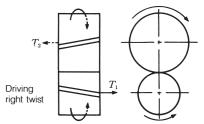
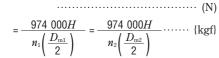


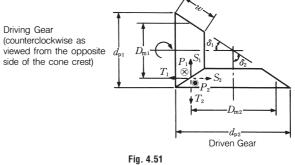
Fig. 4.50 Thrust Direction


 Vertically upward from the page ⊗ Vertically downward from the page FT (+ Bearing A Bearing B Driving gear 1 + + TX T_1 $P_2 \blacktriangleleft$ T_2 S_2 S, T_2 Bearing D Driven gear 2 Bearing C 1 d C

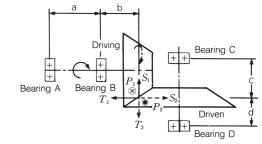
(2) Calculation of Load on Straight Bevel Gears The load at the meshing point of straight bevel gears is

calculated as follows:

$$P_{1} = P_{2} = \frac{-9.550\ 000H}{n_{1}\left(\frac{D_{m1}}{2}\right)} = \frac{-9.550\ 000H}{n_{2}\left(\frac{D_{m2}}{2}\right)}$$



- $D_{m1} = d_{p1} w \sin \delta_1$ $D_{m2} = d_{p2} w \sin \delta_2$
- $S_1 = P_1 \tan \alpha_n \cos \delta_1$ $S_2 = P_2 \tan \alpha_n \cos \delta_2$
- $T_1 = P_1 \tan \alpha_n \cos \delta_1$ $T_2 = P_2 \tan \alpha_n \cos \delta_2$


where	$D_{\rm m}$: Av	erage pitch	diameter	(mm)
		ch diamete		()

- $d_{\rm p}$: Pitch diameter (mm) w: Gear width (pitch line length) (mm) $\alpha_{\rm n}$: Gear normal pressure angle
- α_n . Use informal pressure angle δ : Pitch cone angle Generally, δ_1 + δ_2 = 90°. In this case, S_1 and T_2 (or S_2 and T_1) are the same in magnitude but opposite in direction. *S/P* and *T/P* for δ are shown in Fig. 4.53. The load on the bearing can be calculated as shown below.

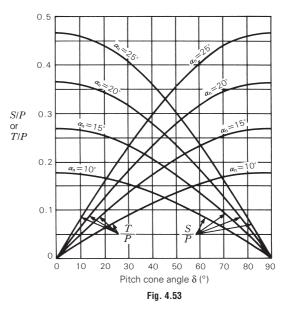

• Vertically upward from the page

Table 4.16		Table 4.16		downward from the page	
Load Classification		Bearing A	Bearing B	Bearing C	Bearing D
ad	From P	$P_{\rm A} = -\frac{{\rm b}}{{\rm a}} P_{\rm 1}$ \odot	$P_{\rm B} = \frac{{\sf a} + {\sf b}}{{\sf a}} P_1 \otimes$	$P_{\rm c} = \frac{{\rm d}}{{\rm c} + {\rm d}} P_2$	$P_{\rm D} = \frac{{\sf C}}{{\sf c} + {\sf d}} P_2$
Radial Load	From S	$S_{A} = -\frac{b}{a} S_{1} \blacksquare$	$S_{\rm B} = \frac{a+b}{a} S_1$	$S_{c} = \frac{d}{c+d}S_{2} \Rightarrow$	$S_{\rm D} = \frac{{\sf c}}{{\sf c} + {\sf d}} S_2 \Rightarrow$
Ra	From T	$U_{\rm A} = \frac{D_{\rm m1}}{2 \cdot a} T_1$	$U_{\rm B} = \frac{D_{\rm m1}}{2 \cdot a} T_1 \clubsuit$	$U_{\rm C} = \frac{D_{\rm m2}}{2({\rm c}+{\rm d})} T_2 \leftarrow$	$U_{\rm D} = \frac{D_{\rm m2}}{2({\rm c} + {\rm d})} T_2 \Rightarrow$
Combined Radial Load		$F_{\rm rA} = \sqrt{P_{\rm A}^2 + (S_{\rm A} - U_{\rm A})^2}$	$F_{\rm rB} = \sqrt{P_{\rm B}^2 + (S_{\rm B} - U_{\rm B})^2}$	$F_{\rm rc} = \sqrt{P_{\rm c}^2 + (S_{\rm c} - U_{\rm c})^2}$	$F_{\rm rD} = \sqrt{P_{\rm D}^2 + (S_{\rm D} + U_{\rm D})^2}$
Axial Load		F_{a} =	$=T_1$	F_{a} =	$=T_2$

Load directions shown reference Fig. 4.52.

(3) Calculation of Load on Spiral Bevel Gears In the case of spiral bevel gears, the magnitude and direction of loads at the meshing point vary depending on the running direction and gear twist direction. The running direction is either clockwise or counterclockwise as viewed from the side opposite of the gears (Fig. 4.54). The gear twist direction is classified as shown in Fig. 4.55. The force at the meshing point is calculated as follows:

$$P_{1} = P_{2} = \frac{9\ 550\ 000H}{n_{1}\left(\frac{D_{m1}}{2}\right)} = \frac{9\ 550\ 000H}{n_{2}\left(\frac{D_{m2}}{2}\right)}$$
.....(N)
$$= \frac{974\ 000H}{n_{1}\left(\frac{D_{m1}}{2}\right)} = \frac{974\ 000H}{n_{2}\left(\frac{D_{m2}}{2}\right)}$$
......(kgf)

where α_n : Gear normal pressure angle β : Twisting angle δ : Pitch cone angle w: Gear width (mm) D_m : Average pitch diameter (mm) d_n : Pitch diameter (mm)

Note that the following applies:

 $D_{\rm m1} = d_{\rm p1} - w \sin \delta_1$

 $D_{\mathrm{m2}} = \dot{d_{\mathrm{p2}}} - w \mathrm{sin} \delta_2$

The separating force S and thrust T depend on running direction and gear twist direction as follows:

(i) Clockwise with right twisting or counterclockwise with left twisting

Driving Gear

Separating Force

$$S_1 = \frac{P}{\cos\beta} (\tan\alpha_n \cos\delta_1 + \sin\beta \sin\delta_1)$$

Thrust

$$T_1 = \frac{P}{\cos\beta} (\tan\alpha_n \sin\delta_1 - \sin\beta \cos\delta_1)$$

Driven Gear Separating Force

ocparating roles

 $S_2 = \frac{P}{\cos\beta} (\tan \alpha_n \cos \delta_2 - \sin\beta \sin \delta_2)$

 $T_2 = \frac{P}{\cos\beta} (\tan\alpha_n \sin\delta_2 + \sin\beta \cos\delta_2)$

(ii) Counterclockwise with right twist or clockwise with left twist $% \left({{{\bf{n}}_{{\rm{s}}}}} \right)$

Driving Gear Separating Force

 $S_1 = \frac{P}{\cos\beta} \left(\tan \alpha_n \cos \delta_1 - \sin\beta \sin \delta_1 \right)$

Thrust $T_1 = \frac{P}{\cos\beta} (\tan\alpha_n \sin\delta_1 + \sin\beta \cos\delta_1)$

Driven Gear Separating Force

 $S_2 = \frac{P}{\cos\beta} (\tan\alpha_n \cos\delta_2 + \sin\beta \sin\delta_2)$

Thrust $T_2 = \frac{P}{\cos\beta} (\tan\alpha_n \sin\delta_2 - \sin\beta \cos\delta_2)$

A positive (plus) calculation result indicates that the load is acting in a direction that separates the gears while a negative (minus) result indicates that the load is acting in a direction that brings the gears together. Generally, $\delta_1 + \delta_2 = 90^\circ$. In this case, T_1 and S_2 (S_1 and T_2) are the same in magnitude but opposite in direction. The load on the bearing can be calculated by the same method as described in Section 4.8.7 "(2) *Calculation of Load on Straight Bevel Gears.*"

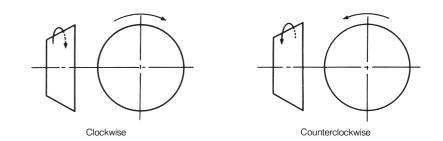
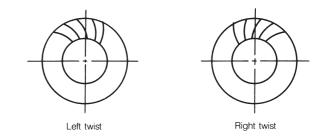
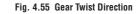
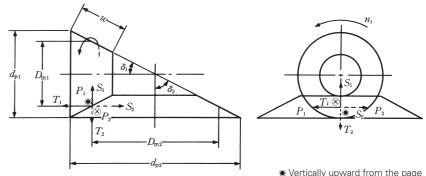





Fig. 4.54 Gear Running Direction

● Vertically upward from the page ⊗ Vertically downward from the page

Fig. 4.56

(4) Calculation of Load on Hypoid Gears The force acting at the meshing point of hypoid gears is calculated as follows:

$$= \frac{-974\ 000H}{n_1\left(\frac{D_{m1}}{2}\right)} = \frac{\cos\beta_1}{\cos\beta_2}P_2 \cdots \{\text{kgf}\}$$

$$= \frac{974\ 000H}{n_2 \left(\frac{D_{m2}}{2}\right)} \dots \{ kgf \}$$

$$D_{\rm m1} = D_{\rm m2} \frac{z_1}{z_2} \cdot \frac{\cos\beta_1}{\cos\beta_2}$$

 $D_{\rm m2} = d_{\rm p2} - w_2 \sin \delta_2$

where α_n : Gear normal pressure angle $\ddot{\beta}$: Twisting angle δ : Pitch cone angle w: Gear width (mm) $D_{\rm m}$: Average pitch diámeter (mm) $d_{\rm p}$: Pitch diameter (mm) z: Number of teeth

The separating force S and thrust T depend on running direction and gear twist direction as follows:

(i) Clockwise with right twisting or counterclockwise with left twisting

Driving Gear

Separating Force

 $S_1 = \frac{P_1}{\cos\beta_1} (\tan\alpha_n \cos\delta_1 + \sin\beta_1 \sin\delta_1)$

Thrust $T_1 = \frac{P_1}{\cos\beta_1} (\tan\alpha_n \sin\delta_1 - \sin\beta_1 \cos\delta_1)$

Driven Gear

Separating Force

 $S_2 = \frac{P_2}{\cos\beta_2} (\tan\alpha_n \cos\delta_2 - \sin\beta_2 \sin\delta_2)$

Thrust $T_2 = \frac{P_2}{\cos\beta_2} (\tan\alpha_n \sin\delta_2 + \sin\beta_2 \cos\delta_2)$

(ii) Counterclockwise with right twist or clockwise with left twist

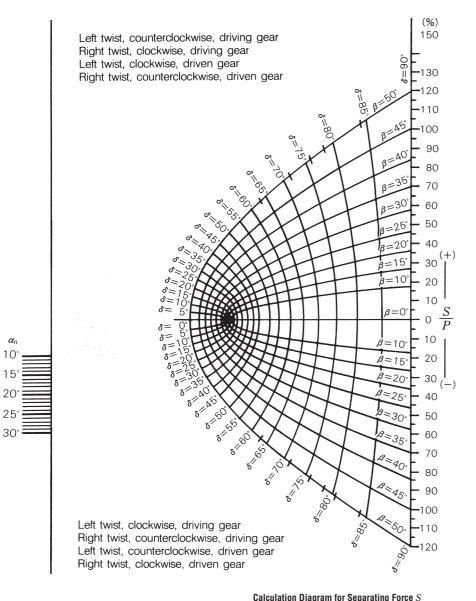
Driving Gear Separating Force

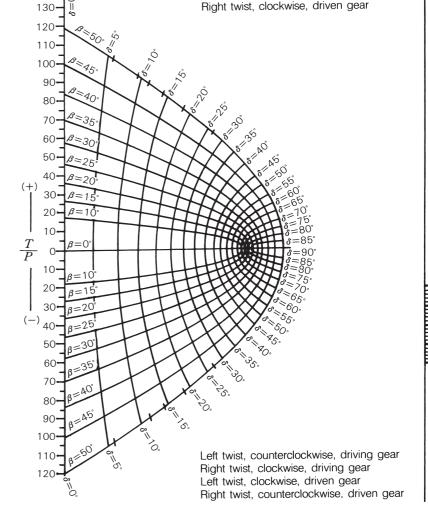
 $S_1 = \frac{P_1}{\cos\beta_1} (\tan\alpha_n \cos\delta_1 - \sin\beta_1 \sin\delta_1)$

Thrust $T_1 = \frac{P_1}{\cos\beta_1} (\tan\alpha_n \sin\delta_1 + \sin\beta_1 \cos\delta_1)$

Driven Gear Separating Force

 $S_2 = \frac{P_2}{\cos\beta_2} (\tan\alpha_n \cos\delta_2 + \sin\beta_2 \sin\delta_2)$


Thrust $T_2 = \frac{P_2}{\cos\beta_2} (\tan\alpha_n \sin\delta_2 - \sin\beta_2 \cos\delta_2)$


The positive (plus) calculation result indicates that the load is acting in a direction that separates the gears while a negative (minus) result indicates that the load is acting in a direction that brings the gears together. Is acting in a direction that orings the gears together. For more information on running direction and gear twist direction, refer to Section 4.8.7 "(3) *Calculation* of Load on Spiral Bevel Gears." The load on the bearing can be calculated by the same method as described in Section 4.8.7 "(2) *Calculation of Load* Acting on Straight Payel Cears." Acting on Straight Bevel Gears."

The following calculation diagrams are used to determine the approximate value and direction of separating force S and thrust T.

How To Use

- 1. Mark the gear normal pressure angle α_n on the vertical scale on the side of the appropriate diagram for *S* or *T*.
- 2. Determine the intersection between the pitch cone angle δ and twist angle β . Match your gear configuration to the text on either side of the $\beta = 0$ line, and use that side when determining the point of intersection.
- 3. Draw a line through the two points and the opposite vertical scale. The point where the line intersects the opposite vertical axis gives the ratio S/P or T/P (%) of the separating force S or thrust T to the tangential force P.

Left twist, clockwise, driving gear

Right twist, counterclockwise, driving gear

Left twist, counterclockwise, driven gear

(%)

150-

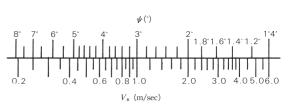
α_n 10° 15° 20° 25° 30°

(5) *Calculation of Load on Worm Gears* A worm gear is a kind of spigot gear, which can produce a high reduction ratio with small volume. The load at the meshing point of worm gears is calculated as shown in Table 4.17. Variables used in Table 4.17 are as follows:

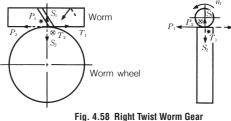
i: Gear ratio
$$\left(i = \frac{Z_2}{Z_w}\right)$$

 η : Worm gear efficiency $\left[\eta = \frac{\tan \gamma}{\tan(\gamma + \psi)}\right]$
 γ : Advance angle $\left(\gamma = \tan^{-1}\frac{d_{p^2}}{id_{p1}}\right)$

 ψ : Frictional angle obtained from the following (as shown in Fig. 4.57):


$$V_{\rm R} = \frac{\pi d_{\rm p1} n_1}{\cos \gamma} \times \frac{10^{-3}}{60}$$

When $V_{\rm R}$ is 0.2 m/s or less, $\psi = 8^{\circ}$. When $V_{\rm R}$ exceeds 6 m/s, $\psi = 1^{\circ}4'$.


 α_n : Gear normal pressure angle α_a : Shaft plane pressure angle $Z_{\rm w}$: No. of threads (No. of worm gear teeth) Z_2 : No. of worm wheel teeth Subscript 1: For driving worm gear Subscript 2: For driven worm gear

In a worm gear, there are four combinations of interaction at the meshing point as shown below depending on the twist directions and rotating directions of the worm gear, as shown below.

The load on the bearing is obtained from the magnitude and direction of each component at the meshing point according to the method shown in Table 4.17.

• Vertically upward from the page & Vertically downward from the page

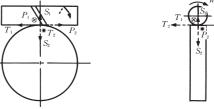
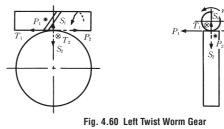



Fig. 4.59 Right Twist Worm Gear (Worm Rotation is Opposite Fig. 4.58)

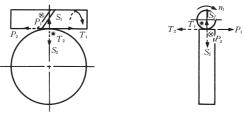
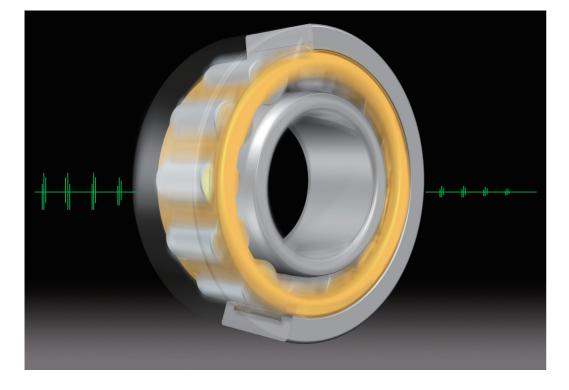


Fig. 4.61 Left Twist Worm Gear (Worm Rotation is Opposite Fig. 4.60)

Force	Worm	Worm Wheel	
Tangential	$\frac{9550000H}{n_1\left(\frac{d_{p1}}{2}\right)} \dots $	$\boxed{\begin{array}{c} \begin{array}{c} 9550\ 000Hi\eta \\ \hline n_1\ \left(\frac{d_{\eta^2}}{2}\right) \end{array}} = \begin{array}{c} P_1\ \eta \\ \hline \tan\gamma \end{array} = \begin{array}{c} P_1 \\ \hline \tan(\gamma+\psi) \\ \hline \end{array}$	
P	$\frac{974\ 000H}{n_1\left(\frac{d_{p1}}{2}\right)} \dots \dots \dots \{ \text{kgf} \}$	$\frac{974\ 000Hi\eta}{n_1\left(\frac{d_{p^2}}{2}\right)} = \frac{P_1\ \eta}{\tan\gamma} = \frac{P_1}{\tan(\gamma+\psi)}$	
Thrust	$\frac{9550\ 000H\eta}{n_1\left(\frac{d_{p^2}}{2}\right)} = \frac{P_1\ \eta}{\tan\gamma} = \frac{P_1}{\tan(\gamma+\psi)}$ (N)	$\frac{-9550\ 000H}{n_1\ \left(\frac{d_{p1}}{2}\right)} \qquad \dots $	
Т	$\frac{974\ 000 H\eta}{n_1\left(\frac{d_{\nu^2}}{2}\right)} = \frac{P_1\ \eta}{\tan\gamma} = \frac{P_1}{\tan(\gamma+\psi)}$	$\frac{974\ 000H}{n_1\left(\frac{d_{\rm pl}}{2}\right)} \dots \{\rm kgf\}$	
Separating S	$\frac{P_{1} \tan \alpha_{n}}{\sin (\gamma + \psi)} = \frac{P_{1} \tan \alpha_{a}}{\tan (\gamma + \psi)}$ (N), {kgf}	$\frac{P_{1} \tan \alpha_{n}}{\sin (\gamma + \psi)} = \frac{P_{1} \tan \alpha_{a}}{\tan (\gamma + \psi)}$ (N), {kgf}	

5. SPEEDS


5.1	Limiting Speed	(Grease/Oil)	A 098
-----	----------------	--------------	-------

5.1.1 Correction of Limiting Speed (Grease/Oil) A 098
5.1.2 Limiting Speed (Grease/Oil) for Rubber Contact Seals in Ball Bearings A 099

5.2	Thermal Speed Rating	A 099
-----	----------------------	-------

5.3 Limiting Speed (Mechanical) A 099

5.4	Tec	hnical Data A 100
5.4	.1	Rotation and Revolution Speed of
		Rolling Elements A 100

5. SPEEDS

NSK uses four definitions of speed, as shown in Table 5.1.

Table 5.1 Overview of Speeds

Speed	Overview	Applicable Lubrication Methods
Limiting Speed (Grease)	Empirically obtained and comprehensive bearing limiting speed when using grease lubrication.	Grease lubrication
Limiting Speed (Oil)	Empirically obtained and comprehensive bearing limiting speed when using oil-bath lubrication.	Oil-bath lubrication
Thermal Speed Rating(1)	Rotational speed at which equilibrium is reached between the heat generated by the bearing and the heat flow emitted through the shaft and housing under reference conditions defined by ISO 15312. This is one among various criteria that shows suitability for high-speed operation.	Oil-bath lubrication subject to conditions outlined in ISO 15312
Limiting Speed (Mechanical)(1)	Mechanical and kinematic limiting speed achievable under ideal conditions for lubrication, heat dissipation, and temperature.	Properly designed and controlled forced- circulation oil lubrication

Note (1) Thermal speed ratings and limiting speeds (mechanical) are only listed in the tables for single-row cylindrical roller bearings and spherical roller bearings.

5.1 Limiting Speed (Grease/Oil)

When bearings are in operation, the higher the speed, the higher the bearing temperature due to friction. The limiting speed is the empirically obtained value for the maximum speed at which bearings can be continuously operated without generating excessive heat or failing due to seizure. Consequently, the limiting speed of bearings varies depending on such factors as bearing type and size, cage shape and material, load, lubricating method, and heat dissipation of the bearing's surroundings.

The limiting speed (grease) and limiting speed (oil) in the bearing tables are applicable to bearings of standard design subjected to normal loads, i.e. $C/P \ge 12$ and $F_a/F_r \le$ approximately 0.2. The limiting speed (oil) listed in the bearing tables is for conventional oil-bath lubrication.

Some types of lubricants are not suitable for high speed, even though they may be markedly superior in other respects. When speeds are more than 70 percent of the listed limiting speeds, be sure to select a grease or oil with good high speed characteristics.

Reference

- Table 11.2 Grease Properties (Pages A236 and 237) Table 11.5 Example Lubricating Oils for Bearing Operating Conditions (Page A239) Table 11.6 Brands of Lubricating Grease (Pages A240
- and A241)

5.1.1 Correction of Limiting Speed (Grease/Oil)

When bearing load *P* exceeds 8 % of the basic load rating *C*, or when the axial load F_a exceeds 20 % of the radial load F_r , the limiting speed (grease) and limiting speed (oil) must be corrected by multiplying the value found in the bearing tables by the correction factor shown in Figs. 5.1 and 5.2.

When the required speed exceeds the limiting speed (oil) of the desired bearing, then the accuracy grade, internal clearance, cage type and material, lubrication, etc. must be carefully studied in order to select a bearing capable of the required speed. In such a case, forced-circulation oil lubrication, jet lubrication, oilmist lubrication, or oil-air lubrication must be used. If all these conditions are considered, a corrected maximum permissible speed may be obtained by multiplying the limiting speed (oil) found in the bearing tables by the correction factor shown in table 5.2. Please consult with NSK regarding high-speed applications.

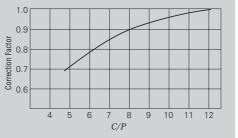
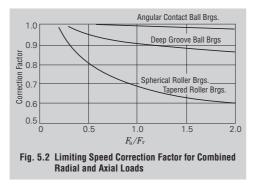
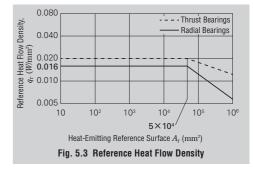




Fig. 5.1 Limiting Speed Correction Factor Variation With Load Ratio

Table 5.2	Limiting Speed Correction Factor for
	High-Speed Applications

Bearing Types	Correction Factor
Needle Roller Brgs.(except broad width)	2
Tapered Roller Brgs.	2
Deep Grooove Ball Brgs.	2.5
Angular Contact Ball Brgs.(except matched bearings)	1.5

5.1.2 Limiting Speed (Grease/Oil) for Rubber Contact Seals in Ball Bearings

The maximum permissible speed for rubber contact sealed bearings (DDU type) is determined mainly by the sliding surface speed of the inner circumference of the seal. Values for the limiting speed are listed in the bearing tables.

5.2 Thermal Speed Rating

The thermal speed rating is the rotational speed at which equilibrium is reached between the heat generated by the bearing and the heat flow emitted through the shaft and housing under reference conditions defined by ISO 15312. This is just one of various criteria used to determine suitability for operation at high speed.

The reference conditions below are defined by ISO 15312:

-Rotation: Inner ring rotation with fixed outer ring -Ambient temperature: 20 °C

- -Outer ring temperature: 70 °C
- -Load (for radial bearings): 5% of static load rating
- $(0.05C_{0r})$

-Lubrication: Oil bath -Lubricant: ISO VG32 (for radial bearings) -Clearance: Normal

The amount of heat dissipated through the housing and shaft can be obtained from Fig. 5.3. In the figure, A_r (mm²) refers to the heat-emitting reference surface area. ISO defines A_r as the total area of the bearing's inner ring bore surface and outer ring outside surface (for radial bearings) and q_r (W/mm²) as the heat flow density. Heat dissipation is calculated by multiplying this surface area (A_r) by the heat flow density (q_r).

5.3 Limiting Speed (Mechanical)

Limiting speed (mechanical) refers to the mechanical and kinematic limiting speed of bearings achievable under ideal lubrication, heat dissipation and temperature conditions, such as with properly designed and controlled forced-circulation oil lubrication for high-speed conditions.

The limiting speed (mechanical) considers the sliding speed and contact forces between the various bearing elements, centrifugal and gyratory forces, etc. The values in the tables are applicable to standard bearings subjected to normal loads (C/P = approximately 12).

In the bearing tables for single-row cylindrical roller bearings and spherical roller bearings, thermal speed ratings, limiting speeds (mechanical) and limiting speeds (grease) are listed. In the bearing tables for other bearing types, limiting speeds (grease) and limiting speeds (oil) are listed.

5.4 Technical Data

5.4.1 Rotation and Revolution Speed of Rolling Elements

When the rolling element rotates without slippage between the bearing rings, the distance the rolling element rolls on the inner ring raceway is equal to that on the outer ring raceway. This allows for a relationship between inner and outer ring speeds n_i and n_e and rolling element rotations n_a .

The revolution speed of the rolling element can be determined as the arithmetic mean of the circumferential speed on the inner ring raceway and that on the outer ring raceway (generally with either a stationary inner or outer ring). The rotations and revolutions of the rolling elements can be related as expressed by Equations (5.1) through (5.4).

No. of rotations

Rotational circumferential speed

No. of revolutions (No. of cage rotations)

Revolutional circumferential speed (cage speed at rolling element pitch diameter)

$$v_{\rm c} = \frac{\pi D_{\rm pw}}{60 \times 10^3} \left[\left(1 - \frac{D_{\rm w} \cos \alpha}{D_{\rm pw}} \right) \frac{n_i}{2} + \left(1 + \frac{D_{\rm w} \cos \alpha}{D_{\rm pw}} \right) \frac{n_{\rm c}}{2} \right] ({\rm m/s}) \cdots ({\bf 5.4})$$

where D_{pw} : Pitch diameter of rolling elements (mm) D_{w} : Diameter of rolling element (mm)

ν_{w} .	Blaineter er reining	0.
α :	Contact angle (°)	

 $n_{\rm e}$: Outer ring speed (min⁻¹)

 $n_{\rm i}$: Inner ring speed (min⁻¹)

Rotations and revolutions of the rolling elements are shown in Table 5.3 for inner ring rotating $(n_c = 0)$ and outer ring rotating $(n_i = 0)$ respectively at $0^{\circ} \le \alpha < 90^{\circ}$ and at $\alpha = 90^{\circ}$. Table 5.4 shows the rotation speed n_a and revolution speed n_c of the rolling elements during inner ring rotation of ball bearings 6210 and 6310.

Table 5.4 Rolling Element Rotation Speed $\textit{n}_{\rm a}$ and Revolution Speed $\textit{n}_{\rm c}$ for Ball Bearings 6210 and 6310

Ball Bearing	γ	n _a	n _c
6210	0.181	$-2.67n_i$	0.41 <i>ni</i>
6310	0.232	$-2.04n_i$	0.38 <i>n</i> i

Remarks $\gamma = \frac{D_{\rm w} \cos \alpha}{D_{\rm pw}}$

Table 5.3 Rolling Element Rotation Speed n _a	, Rotational Circumferential
Speed v_a , Revolution Speed n_c , and	d Revolutional Circumferential
Speed $v_{\rm c}$	

Contact Angle	Rotation/Revolution Speed	Inner Ring Rotation ($n_c = 0$)	Outer Ring Rotation $(n_i = 0)$
	$n_{\rm a}$ (min ⁻¹)	$-\left(rac{1}{\gamma}-\gamma ight)rac{n_i}{2}\cdot\coslpha$	$\left(\frac{1}{\gamma} - \gamma\right) \frac{n_{\rm c}}{2} \cdot \cos \alpha$
$0^\circ \leq \alpha < 90^\circ$	v _a (m/s)	$\frac{\pi D}{60\times}$	$n_{10^{3}}^{w}$ n_{a}
0 = 4 < 50	$n_{ m c}$ (min ⁻¹)	$(1-\gamma)\frac{n_i}{2}$	$(1+\gamma) \frac{n_{\rm e}}{2}$
	v_c (m/s)	$\frac{\pi D_{\rm i}}{60\times}$	$\frac{10^3}{10^3}$ n_c
	n_{a} (min ⁻¹)	$-\frac{1}{\gamma}\cdot \frac{n_i}{2}$	$\frac{1}{\gamma} \cdot \frac{n_{\rm c}}{2}$
$\alpha = 90^{\circ}$	$v_{ m a}$ (m/s)	$\frac{\pi D}{60\times}$	n_{a}^{w}
u — 30	$n_{ m c} \ (\min^{-1})$	$\frac{n_i}{2}$	<u></u> 2
	v _c (m/s)	$\frac{\pi D_{\rm i}}{60 \times 10^{-10}}$	$\frac{m}{10^3} n_{\rm C}$

Reference 1. ±: "+" indicates clockwise rotation while "-" indicates counterclockwise rotation.

2.
$$\gamma = \frac{D_{\rm w} \cos \alpha}{D_{\rm pw}} (0^\circ \le \alpha < 90^\circ), \ \gamma = \frac{D_{\rm w}}{D_{\rm pw}} (\alpha = 90^\circ)$$

6.1 B	oundary Dimensions and Dimensions of	
S	nap Ring Grooves	····· A 104
6.1.1	Boundary Dimensions	A 104
6.1.2	Dimensions of Snap Ring Grooves and Locating Snap Rings	A 104

6.2 Formulation of Bearing Designations A 120

Diameter

6. BOUNDARY DIMENSIONS AND BEARING DESIGNATIONS

6.1 Boundary Dimensions and Dimensions of Snap Ring Grooves

6.1.1 Boundary Dimensions

The boundary dimensions of rolling bearings, which are shown in Figs.6.1 through 6.5, refer to the dimensions that define their external geometry. They include bore diameter d, outside diameter D, width B, assembled bearing width(or height) T, chamfer dimension r, etc. All of these dimensions are important when mounting a bearing on a shaft and in a housing. These boundary dimensions have been internationally standardized (ISO15) and adopted by JIS B 1512 (Boundary Dimensions of Rolling Bearings).

The boundary dimensions and Dimension Series of radial bearings, tapered roller bearings, and thrust bearings are listed in Tables 6.1 to 6.3 (Pages A106 to A115).

These tables list boundary dimensions for each Diameter and Dimension Series by bore number. A very large number of series are possible; however, not all are currently commercially available. Representative bearing types and series designations are shown across the top of the bearing tables (refer to Table 6.5, Bearing Series Designations on Page A121 for more information).

The relative cross-sectional dimensions of radial bearings (excluding tapered roller bearings) and thrust bearings for various series are shown in Figs. 6.6 and 6.7 respectively.

6.1.2 Dimensions of Snap Ring Grooves and Locating Snap Rings

The dimensions of snap ring grooves in the outer surfaces of bearings and the dimensions and accuracy of the locating snap rings themselves are specified by ISO 464. The dimensions of snap ring grooves and locating snap ring for bearings of Diameter Series 8, 9, 0, 2, 3, and 4 are shown in Table 6.4 (Pages A116 to A119).

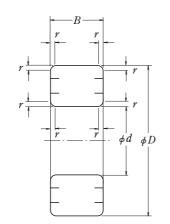


Fig. 6.1 Boundary Dimensions of Radial Ball and Roller Bearings

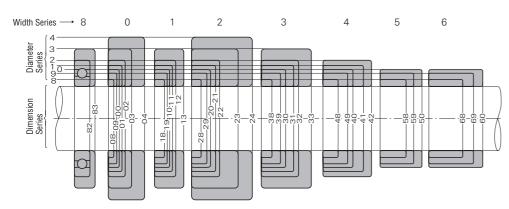


Fig. 6.6 Comparison of Cross Sections of Radial Bearings (Excluding Tapered Roller Bearings) for Various Dimensional Series

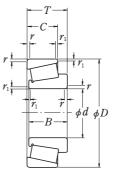


Fig. 6.2 Tapered Roller Bearings

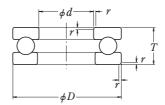


Fig. 6.3 Single-Direction Thrust Ball Bearings

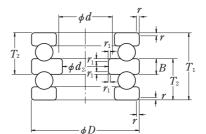


Fig. 6.4 Double-Direction Thrust Ball Bearings

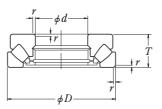


Fig. 6.5 Spherical Thrust Roller Bearings

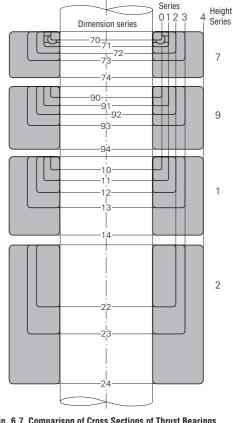


Fig. 6.7 Comparison of Cross Sections of Thrust Bearings (Excluding Diameter Series 5) for Various Dimension Series

					Dimension Series	10~60	r (min.)	0.15	0.15 0.15 0.15	0.2 0.3 0.3	0.3	0.3	0.3 0.6 0.6	0.6 0.6					с, с, с с, с, ц
					Dime Se	8	r (r					0.3	0.3	0.3	0.3 0.3 0.3	0.6 0.6	0.6 0.6 0.6	0.6 0.6 0.6	~ ~ · ·
						09					25 27	ଷ୍ଟ୍ରଷ୍ଟ୍ର	844	4 1 4	54 86 05	2228	887	887	888
				s 0		50					 20	21 23	30 30 30	32 34 34 32	35 36 38	40 46	46 46 54	54 60 60	67 67
	NN40		240	r Series	Series	40					15	16 17	18 22 22	22 24 25	26 27 28	38.33	35 35 40	45 45	202
	0ENN		230	Diameter	Dimension :	30	В	m	3.5	9 ~ 6	11 12	12 13	14 16 16	16 19	20 21 21	23 23 26	26 26 30	34 34 34	37
	N20			Di	Dime	20					860	1011	1 1 1 2	15 16	16 118	19 19 22	22 24 24	24 27 27	888
82	N10					10		2.5	2.8 3.3	4 0 9	9 ~ ~	ထထတ	12 12	13 13 13	15 15 15	16 18	18 18 20	20 22 22	24 24
160						8						~ 8	$\infty \infty \infty$	ထထတ	თ თ თ	101	222	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16
						D		9	7 8 9	12 14	19 22 24	26 28 32	35 42 44	47 52 55	58 62 68	75 80 90	95 100 110	115 125 130	140 145
					Dimension Series	49~69	÷			0.15	0.15 0.2 0.3	0.00	0.00	0.00	0.6 0.6 0.6	0.6			223
					nsion	19~39	r (min.)	0.1	0.15 0.15 0.15	0.15 0.2 0.2	0.3	0.0	0.0	0.0	0.6 0.6 0.6	0.6 1.6			
					Dime	60							0.3	0.3	0.3	0.3	0.3 0.6	0.6 0.6 0.6	0.6
		NA69		6		69						23 23	99 33 99 33	888	36 36 40	45 04 55	45 54 54 54	54 54 63	63
		NA59				59						16 18 18	18 23 23	23 23 53 23	27 27 30	8 0 %	34 86 40	40 46 64 60 70	46 646
	NN49	NA49		Diameter Series	Series	49				00	655	<u>000</u>	666	555	20 22 22	22 25 25	25 25 30	32.39	39.39
	NN39		239	Diam	Dimension	8	В	2.3	6.9 9.4	902	⊳ 6	000	13.00	000	15 16	16 19	19 23	23 26 26	26 26
	N29				Dime	59						8 8 8.5	8.5 11	222	€ 6 6 7	<u>+</u> + + + + + + + + + + + + + + + + + +	16 19 19	19 22	22
66	N19					19		1.6	2.5 3.5	440	0 0 0	9 0	⊳ 6	თ თ თ	12 10 10	13 13 13	13 13 13	16 18 18	18 28
						60							1 ~ ~ ~		0 2 2	ထထတ	660	661	===
						D		1 4 2	6 8	12 13	11 20	22 24 28	30 37 39	45 45	52 55 62	68 72 80	85 90 100	105 110 120	125
					imension Series	18~68	r (min.)	0.05	0.08 0.08 0.1	0.1 0.15 0.15	0.15 0.2 0.2	0.3	0.3	0.3	0.3	0.3	0.3 0.6 0.6	0.6 0.6	
					Dime	8	r (I						0.3	0.3	0.3	0.3	0.3	0.0	0.00
						68							122	888	888	828	888	884	884
				8 S		58							191	16 16 16	91 0 1 0 1 0	23 23 48	522	8.22	청청청
		1 🕸	1	- <i>-</i>	1 22				1 1 1		000	တတတ	12	12	121	15	20	25	25
	NN48	NA48		ir Ser	Serie	48					1		-	- -	166				
	NN38	NA4		iameter Ser	Insion Serie	38 48	В	1.4	3.2.3	4 10 0	ပထထ	~ ~ ~ ~	7 10 10	1010	0100	13 13	400	0 0 0 0 0 0 0	619
		NA4		Diameter Series	Dimension Series		В		3.26	9.0 9.0 9.0 9.0 9.0	വവവ	9 9 9 9							16 16 19 19
68	NN38	NA4		Diameter Ser	Dimension Serie	38	В	2.1.5	2.3 3.66 3.6	4 10 0		۵۵۵ ۵ ۵ ۵ ۵ ۵	- 10 -	000	1000	10 13 13	15 15 15	15 19	16
89	NN38	NA4		Diameter Ser	Dimension Serie	28 38	В	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.5 3.5 5 4 3.5 6 7 4 7 6 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7	1 4 4.35 5 55	مى مى مى	+ 4 - 5 6 6 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	4 4 4 7 7 7 8 10 10 10 10	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 7 8 10 5 7 10 12 7 9 11 13	7 10 12 14 7 10 12 14 8 10 13 15 15	8 10 13 15 15 15 15 15 15 15 15 15 15 15 15 15	9 13 16 13 16 13 16
68	NN38	NA4		Diameter Ser	Dimension Serie	D 08 18 28 38		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 - 1.5 - 2.3 6 - 1.8 - 2.6 - 2.6 - 3	2.5 3.5 3.5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 8 5 5 5 5	4 4 5 .5 5 .5	വവവ		000	1000	7 8 10 7 10 12 11 13	12 14 13 15 15 15	10 13 15 10 13 15 13 16 19	
68	NN38	NA4				08 18 28 38	(min.) B	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.5 3.5 5 4 3.5 6 7 4 7 6 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7	1 4 4.35 5 55	19 21 15 1 15 5 5 5 5	+ 4 - 5 6 6 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 10 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	4 4 4 7 7 7 8 10 10 10 10	44 4 7 10 47 4 7 8 10 52 4 7 8 10 8 10	58 4 7 8 10 65 5 7 10 12 72 7 9 11 13	7 10 12 14 7 10 12 14 8 10 13 15 15	95 8 10 13 15 100 8 10 13 15 110 9 13 16 19	9 13 16 13 16 13 16
68	NN38	NA4				37 17~37 D 08 18 28 38		$\begin{bmatrix} 2.5 & -1 & 1 & -1 & 1.4 \\ 3 & -1 & 1 & -1 & 1.5 \\ 4 & -1 & 1.2 & -2 & 2 \end{bmatrix}$	5 5 1 .5 1 .	3 008 9 - 2.5 3.5 4 3 0.08 11 - 3 4 5 3.5 0.1 13 - 3.5 5 6	3.5 0.1 14 - 3.5 5 3.5 3.5 0.1 16 - 4.5 5 0.1 17 + 4.5 5 0.1 17 - 1 - 5 5 0.1 17 - 1 - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.1 19 0.2 211 11 55 24 1155 24 1155	26 - 5 6 7 32 4 7 8 10 34 4 7 - 10	02 37 4 7 8 10 02 42 4 7 8 10 10 10 7 7 8 10 10 10 10	44 4 7 10 52 4 7 8 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10	- 58 4 7 8 10 - 65 5 7 10 12 - 72 7 9 11 13	78 7 10 12 14 85 7 10 13 15 90 8 10 13 15	95 8 10 13 15 100 8 10 13 15 110 9 13 16 19	115 9 13 16 120 9 13 16
68	NN38	MA4				27 37 17~37 D 08 18 28 38		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 35 0.1 14 3.5 5 - 3.5 0.1 16 - 4.5 5 - 1.7 16 - 4.5 5	0.1 19 0.2 211 11 55 24 1155 24 1155	02 26 - 5 6 7 02 32 4 7 8 10 - 34 4 7 - 10	02 37 4 7 8 10 02 42 4 7 8 10 10 10 7 7 8 10 10 10 10	+ + 7 + 10 - - - + + 7 8 10 - - - 52 4 7 8 10 10	- 58 4 7 8 10 - 65 5 7 10 12 - 72 7 9 11 13	78 7 10 12 14 85 7 10 13 15 90 8 10 13 15	95 8 10 13 15 100 8 10 13 15 15 110 9 13 16 13 15	115 120 130 131 131 131 131 140 131 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 16 13 17 16 17 16 17 17 16 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17
	N/28			Diameter Series 7 Diameter Ser	Dimension Series Dimension Serie	37 17~37 D 08 18 28 38	(min.)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 45 0.1 19 5 6 0.2 21 19 5 7 0.2 24 1 5 7 0.2 24 1 5 5 0.2 24 1 1 5	4 - 5 0.2 26 - 5 6 7 - - 5 0.2 32 4 7 8 10 - - - - 33 4 7 7 10 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- - 44 4 7 - 10 - - - - 47 4 7 8 10 - - - - - 47 4 7 8 10 - - - - - - - - 10 - - - 10 -	- - 58 4 7 8 10 - - - 65 5 7 10 12 - - - 65 5 7 10 12 7 72 7 9 11 13	78 7 10 12 14 85 7 10 13 15 86 7 10 13 15 86 7 10 13 15 86 7 10 13 15	1 35 8 10 13 15 1 100 8 10 13 15 1 100 8 10 13 15 1 100 8 10 13 15 1 100 8 10 13 15 1 10 9 13 16 19	115 9 13 16 120 9 13 16 121 9 13 16
	NN38		Spherical Roller Bearings			27 37 17~37 D 08 18 28 38	(min.)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 35 0.1 14 3.5 5 - 3.5 0.1 16 - 4.5 5 - 1.7 16 - 4.5 5	15 3 4.5 0.1 19 5 18 4 5 0.2 21 5 21 4 5 0.2 24 5	23 4 - 5 0.2 26 - 5 6 7 27 4 - 5 0.2 32 4 7 8 10 - - - 34 4 7 - 10 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- - - 44 4 7 - 10 - - - - 47 4 7 8 10 - - - - 47 4 7 8 10 - - - - - 47 4 7 8 10 - - 52 4 7 8 10	- - - 58 4 7 8 10 - - - - 55 5 7 10 12 - - - 65 5 7 10 12 - - - 65 5 7 10 12 - - - - - - - 10 12 - - - - - - - 10 12	- - 78 7 10 12 14 - - 85 7 10 13 15 - - 86 7 10 13 15 - - 90 8 10 13 15	95 8 10 13 15 1 100 8 10 13 15 1 1 10 3 15 15 1 1 10 3 15 15	115 9 13 16 120 9 13 16 121 9 13 16

000	522	221	351	044	440	വവവ	യയവ	0 0 0		7.5 7.5 7.5	7.5 7.5 7.5		0.0 0.0 0.0	1222	0.00.10	11	
			22		444	440		مىم	0.000	6 7.5	7.5	7.5	9.5	111		11	
888	3855	598	2180 2180 2180 2180	2550 2550 2550	2290 2230 2230	325 4 325 4 355 4	355 375 400	644 665 60 60 60 60 60 60 60 60 60 60 60 60 60	462 488 515 6	560 580 615	630 670 690	800	825 9			11	
25 80 80 80	95 95 100	109 1	150	0000	218 243 243	243 272 272	272 280 300 280	335 2 2	355 2	425 462 462	515 6 515 6	2260 560 600	650 8			11	
90 90	69 69 75	860	1109	1118	9 <u>9</u> 99 99 80 80	200 200 200 200	212 218 218	218 218 250	258 272 290	308 315 335	345 365 375	412 438 438	462 475 500	530 545 615	630 650 690	11	
45 46 46	52 56 56	60 67 74	75 90 90	92 104 106	118 121 133	134 135 148	150 157 163	165 167 185	195 200 212	230 236 250	258 272 280	300 308 325	345 355 375	400 412 462	475 500 530	11	
36 38	42 45	48 54 60	60 66 72	72 82 82	95 95 106	106 106 118	118 122 128	128 128 145	150 155 170	180 185 195	200 212 218	236 243 250	265 272 290	300 315 355	365 375 400	11	
3838	888	8648	51 56	89.89	24 28	888	826	100 112	115 118 128	150 150	155 165 170	185 195	200 212 218	230 243 272	280 308 308	11	
19 19 19	22 22 24	25 28 31	31 34 37	544	50 57	57 57 63	63 71	12 12 08	88 85 82	001 001 001 001	112 118 122	138 140	145 155 -			11	
160 170 180	200 210 225	240 260 280	290 310 340	360 400 420	460 480 520	540 560 600	620 650 680	700 720 780	820 870 920	980 1030 1090	1150 1220 1280	1360 1420 1500	1580 1660 1750	1850 1950 2120	2240 2360 2500	11	
	1.5 2.1	222	221	2112	ოოო	0 4 4	444	വവവ	യവവ	000	000	7.5 7.5 7.5	7.5 7.5 7.5	7.5 9.5 9.5	9.5 9.5 12	12	
	1.5 2	222	2.1	2.1	ოოო	ω 4 4	444	പവവ	യെവ	999	999	7.5 7.5 7.5	7.5 7.5 7.5	7.5 9.5 9.5	9.5 9.5 12	12	
0.0 0.6 0.6			1.5 1.5 1.5	2 2 2	2:1	0.0 m 1.0 m	ω 4 4	444	വവവ	യവവ	000	6 7.5	7.5 7.5 7.5	7.5		11	
71 71 80	90 90 109	109 109 125	125 145 145	145 180 180	218 218 218	218 250 250	250 290 290	308 308 325	345 355 400	412 438 450	462 488 500	545 580 615	615 650 690	710		11	
54 54 00	67 67 80	80 80 81 80	95 109 109	109 136 136	160 160 160	160 190 190	190 218 218	230 230 243	258 272 300	308 325 335	355 365 375	400 438 462	462 488 515	545		11	
40 45 45	20 20 20	09 09 09	69 80 80 80 80 80 80 80 80 80 80 80 80 80	80 100 100	118 118 118	118 140 140	140 160 160	170 170 180	190 200 218	230 243 250	258 272 280	300 315 335	335 355 375	400 425 450	462 475 500	1 530	
34 30 34	37 37 45	45 52 52	52 60 60	60 75 75	6666	90 106 106	106 118 118	128 128 136	140 150 165	170 180 185	195 200 206	224 236 250	250 272 280	300 315 335	345 355 375	90	
24 27 24	888	884	488	84 <u>8</u> 8 8	2222	88 83	3888	100 106 106	112 118 128	145 145 145	150 155 165	175 185 195	195 206 218	230 243 258	265 280 290	1 38	
222	28 24 28	888	8888	844	22 22 22	8888	25 24 24	82 82 82	38 O 10 88	103 1106 112	115 118 122	132 140 150	150 160 170	175 185 195	200 212 218	230	ving:
002	10 16	23 19	388	333	333	844	488	226		2288	888	826	1115	1 128		11	following: Js
145 150 165	180 190 210	220 230 250	260 280 300	320 360 380	420 440 460	480 520 540	560 600 620	650 670 710	750 800 850	900 950 1000	1060 1120 1180	1250 1320 1400	1460 1540 1630	1720 1820 1950	2060 2180 2300	2430	apply to the for roller bearings earings
			 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	222	2:1	2:1	2.1 3.3	ოოო	ω ω 4	440	വവവ	0 0 0	000	6 7.5 7.5	7.5 7.5 9.5	9.5 9.5	apply t roller be earings
0.0	0.6 0.6	0.6 0.6			1.5	2 2 2	500	512		ω 4 4		വവവ		00			ily apply es al roller bearing
822		2883	888	109 125	145 145 145	145 180 180	180 218 218	218 218 218	218 236 272	272 290 308	325 325 345	400	428 450 450 450 450 450 450 450 450 450 450	1 545			essarily grooves indrical ct ball b ores
844	882	2888															or hor s
3025			67	888	109	136 136 136	108	160 160 160	160 175 200	200 218 230	243 243 258	272 300 300	325 325 335	375 400 	111	11	t necessarily ring grooves n cylindrical ontact ball be red bores
	35 35 40	45 45		80 80 80 80 80 80 80 80 80 80 80 80 80 8	80 80 109 80 109 80	80 109 100 136 136	100 136 100 136 118 160										do not neces snap ring gro ection cylind ular contact l tapered bor
52 22 4 <u>0</u>		34 34 34 45 45 45			888	0001 1008		160 160 160	160 175 200	200 218 230	243 243 258	272 300 300	325 325 335	375 400 	265 345	11	ble do not vith snap ri in-section angular co with tapere
	30 SC 28		37 50 37 50 37	45 45 52 60 69	888	0001 1008	1100	118 160 118 160 118 160	118 160 128 175 150 200	150 200 160 218 170 230	180 243 180 243 190 258	200 272 218 300 218 300	243 325 243 325 250 335	280 375 300 400 315 –	345	400	is table do not gs with snap ri in thin-section e in angular co ngs with tapere
13 16 19 23 16 19 23 16 23 23	18 22 26 18 22 26 20 24 30 24 30 26 25 26 26 24 30 24 30 26 24 30 26 24 30 26 24 30 24 26 26 26 26 26 26 26 26 26 26 26 26 26	20 24 30 22 27 34 22 27 34	24 30 37 50 24 30 37 50 24 30 37 50	28 36 45 60 28 36 45 60 33 42 52 69	38 48 60 80 80 80 80 80 80 80 80 80 80 80 80 80	38 48 60 80 46 60 75 100 80 46 60 75 100 80	46 60 75 100 46 60 75 100 56 72 90 118	56 72 90 118 160 56 72 90 118 160 56 72 90 118 160	56 72 90 118 160 60 78 98 112 128 175 69 88 112 150 200	69 88 112 150 200 74 95 118 160 218 78 100 128 170 230	82 106 136 136 243 82 106 136 180 243 85 112 140 190 258	90 118 150 200 272 100 128 165 218 300 100 128 165 218 300	106 140 180 243 325 106 140 180 243 325 1112 145 185 250 335	122 165 206 280 375 132 175 224 300 400 140 185 243 315 —	155 200 265 345 - 160 206 272 355 - 165 218 290 375 -	175 230 300 400 — 190 250 325 425 —	is table do not gs with snap ri in thin-section e in angular co ngs with tapere
10 16 19 23 16 19 23 16 19 23 16 19 23 16 19 23 16 19 23 16 19 23 16 19 23 16 19 23 16 19 23 16 19 23 16 19 23 16 19 23 16 19 23 16 19 23 16 19 23 16 19 23 16 19 23 16 19 23 16 19 20 10 10 10 10 10 10 10 10 10 10 10 10 10	11 18 22 26 11 18 22 26 13 20 24 30	13 20 24 30 14 22 27 34 14 22 27 34	16 24 30 37 50 16 24 30 37 50 16 24 30 37 50 16 24 30 37 50	19 28 36 45 60 19 28 36 45 60 23 33 42 55 60	25 25 38 48 60 80 80 80 80 80 80 80 80 80 80 80 80 80	25 38 48 60 80 31 46 60 75 100 31 46 60 75 100	31 46 60 75 100 31 46 60 75 100 37 56 72 90 118	37 56 72 90 118 160 37 56 72 90 118 160 37 56 72 90 118 160	37 56 72 90 118 160 42 60 78 98 128 175 48 69 88 112 150 200	48 69 88 112 150 200 50 74 95 118 160 218 54 78 100 128 170 230	57 82 106 136 180 243 57 82 106 136 180 243 60 85 112 140 190 258	63 90 118 150 200 272 71 100 128 165 218 300 71 100 128 165 218 300	78 106 140 180 243 325 78 106 140 180 243 325 80 112 145 185 250 335	88 122 165 206 280 375 95 132 175 224 300 400 140 185 243 315	155 200 265 345 160 206 272 355 165 218 290 375	- 175 230 300 400 - 190 250 325 425 -	is table do not gs with snap ri in thin-section e in angular co ngs with tapere
130 9 13 16 19 23 140 10 16 19 23 150 10 16 19 23	165 11 18 22 26 175 11 18 22 26 175 11 18 22 26 190 13 20 24 30	200 13 20 24 30 215 14 22 27 34 225 14 22 27 34	240 16 24 30 37 50 250 16 24 30 37 50 270 16 24 30 37 50	300 19 28 36 45 60 320 19 28 36 45 60 350 19 28 36 45 60 350 22 33 42 52 60	380 25 38 48 60 80 400 25 38 48 60 80 80 420 25 38 48 60 80 80 80 20 25 38 48 60 80	440 25 38 48 60 80 480 31 46 60 75 100 500 31 46 60 75 100	520 31 46 60 75 100 7 540 31 46 60 75 100 7 580 37 56 72 90 1118 7	600 37 56 72 90 118 160 60 60 71 161 160 161 160 161 160 161 160 161 160 161 160 161 160 161 160 161 160 160 161 160	680 37 56 72 90 118 160 730 42 60 78 98 128 175 780 48 69 88 112 150 200	820 48 69 88 112 150 200 870 50 74 95 118 160 218 920 54 78 100 128 170 230	980 57 82 106 136 180 243 1030 57 82 106 136 180 243 1030 60 85 112 140 190 258	1150 63 90 118 150 200 273 1220 71 100 128 165 218 300 1280 71 100 128 165 218 300	1360 78 106 140 180 243 325 1420 78 106 140 180 243 325 1500 80 112 145 185 250 335	1600 88 122 165 206 280 375 1700 95 132 175 224 300 400 1820 — 140 185 243 315 —	1950 155 200 265 345 2060 160 206 272 355 2180 165 218 290 375	2300 - 175 230 300 400 - 2430 - 190 250 325 425 -	isions listed in this table do not boves in outer rings with snap ri side without ribs in thin-section e front-facing side in angular co ner rings in bearings with taper
- 130 9 13 16 19 - 140 10 16 19 23 - 150 10 16 19 23	165 11 18 22 26 - 176 11 18 22 26 - 176 11 18 22 26 190 13 20 24 30	200 13 20 24 30 215 14 22 27 34 225 14 22 27 34			380 25 38 48 60 80 1<	- 440 25 38 48 60 80 -<	- 520 31 46 60 75 100 - 540 31 46 60 75 100 7 - 540 31 46 60 75 100 7 - 540 31 46 60 75 100 7 - 550 37 56 72 90 118 7		680 37 56 72 90 118 160 730 42 60 78 98 128 175 780 48 69 88 112 150 200	820 48 69 88 112 150 200 870 50 74 95 118 160 218 870 50 74 95 118 160 218 870 54 78 700 128 170 230	- 980 57 82 106 136 180 243 - 1030 57 82 106 136 180 243 - 1030 67 82 106 136 180 243 - 1090 60 85 112 140 190 258	- 1150 63 90 118 150 200 272 - 1220 71 100 128 165 218 300 - 1280 71 100 128 165 218 300	- 1360 78 106 140 180 243 325 - 1420 78 106 140 180 243 325 - 1420 78 106 140 180 243 325 - 1500 80 1112 145 185 250 335	1600 88 122 165 206 280 375 1700 95 132 175 224 300 400 1820 — 140 185 243 315 —	1950 155 200 265 345 2060 160 206 272 355 2180 165 218 290 375	- 2300 - 175 230 300 400 - - 2430 - 190 250 325 425 -	isions listed in this table do not boves in outer rings with snap ri side without ribs in thin-section e front-facing side in angular co ner rings in bearings with taper
- - 130 9 13 16 19 - - - 140 10 16 19 23 - - - 10 16 19 23	1 165 11 18 22 26 175 11 18 22 26 175 11 18 22 26 190 13 20 24 30	- - 200 13 20 24 30 - - - 215 14 22 27 34 - - - 225 14 22 27 34	240 16 24 30 37 50 250 16 24 30 37 50 270 16 24 30 37 50	- -	380 25 38 48 60 80 1 1 1 1 400 25 38 48 60 80 <td>- -</td> <td>- - 520 31 46 60 75 100 - - - 540 31 46 60 75 100 7 - - - 540 31 46 60 75 100 7 - - - 56 37 56 72 90 118 7</td> <td></td> <td>- - 680 37 56 72 90 118 160 - - - 730 42 60 78 98 128 175 - - 730 42 60 78 98 178 175 - - 730 48 69 88 112 150 200</td> <td>- - 820 48 69 88 112 150 200 - - - 870 50 74 95 118 160 218 - - 920 54 78 100 128 170 230</td> <td>- - 980 57 82 106 136 180 243 - - - 1030 57 82 106 136 180 243 - - 1030 57 82 106 136 180 243 - - 1090 60 85 112 140 190 268</td> <td>- - 1150 63 90 118 150 200 272 - - - 1220 71 100 128 166 218 300 - - 1280 71 100 128 166 218 300</td> <td>- - 1360 78 106 140 180 243 325 - - 1420 78 106 140 180 243 325 - - 1420 78 106 140 180 243 325 - - 1450 80 112 145 180 243 325</td> <td>- - 1600 88 122 165 206 280 375 - - 1700 95 132 175 224 300 400 - - 1820 - 140 185 243 300 400</td> <td>- - 1950 - 155 200 265 345 - - - 2060 - 160 206 272 355 - - - 2180 - 165 218 230 375 -</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>isions listed in this table do not boves in outer rings with snap ri side without ribs in thin-section e front-facing side in angular co ner rings in bearings with taper</td>	- -	- - 520 31 46 60 75 100 - - - 540 31 46 60 75 100 7 - - - 540 31 46 60 75 100 7 - - - 56 37 56 72 90 118 7		- - 680 37 56 72 90 118 160 - - - 730 42 60 78 98 128 175 - - 730 42 60 78 98 178 175 - - 730 48 69 88 112 150 200	- - 820 48 69 88 112 150 200 - - - 870 50 74 95 118 160 218 - - 920 54 78 100 128 170 230	- - 980 57 82 106 136 180 243 - - - 1030 57 82 106 136 180 243 - - 1030 57 82 106 136 180 243 - - 1090 60 85 112 140 190 268	- - 1150 63 90 118 150 200 272 - - - 1220 71 100 128 166 218 300 - - 1280 71 100 128 166 218 300	- - 1360 78 106 140 180 243 325 - - 1420 78 106 140 180 243 325 - - 1420 78 106 140 180 243 325 - - 1450 80 112 145 180 243 325	- - 1600 88 122 165 206 280 375 - - 1700 95 132 175 224 300 400 - - 1820 - 140 185 243 300 400	- - 1950 - 155 200 265 345 - - - 2060 - 160 206 272 355 - - - 2180 - 165 218 230 375 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	isions listed in this table do not boves in outer rings with snap ri side without ribs in thin-section e front-facing side in angular co ner rings in bearings with taper
130 9 13 16 19 140 10 16 19 23 150 10 16 19 23	165 11 18 22 26 1 175 11 18 22 26 1 175 11 18 22 26 1 175 11 18 22 26 1 175 11 18 22 26 1 170 13 20 24 30		- - 240 16 24 30 37 50 - - - - 250 16 24 30 37 50 - - - - 250 16 24 30 37 50 - - - 270 16 24 30 37 50	- -	380 25 38 88 380 25 38 48 60 400 25 38 48 60 80 1 1 1 1 1 1 1 1 1 1 1 60 80		- - 520 31 46 60 75 100 - - - 540 31 46 60 75 100 7 - - - 540 31 46 60 75 100 7 - - - 540 37 56 72 90 118 7	- - 600 37 56 72 90 118 160 - - - 620 37 56 72 90 118 160 - - - 650 37 56 72 90 118 160 - - - 650 37 56 72 90 118 160	- - - 680 37 56 72 90 118 160 - - - 730 42 60 78 98 128 175 - - - 780 48 69 88 112 150 200	820 48 69 88 112 150 200 870 50 74 95 118 160 218 870 50 74 95 118 160 218 820 54 74 95 118 160 218 820 54 78 100 128 170 230	980 57 82 106 136 180 243 1030 57 82 106 136 180 243 1030 57 82 106 136 180 243 1090 60 85 112 140 190 258	1150 63 90 118 150 200 273 1120 71 100 128 165 218 300 1280 71 100 128 165 218 300	1360 78 106 140 180 243 325 1420 78 106 140 180 243 325 - 1420 78 106 140 180 243 325 - 1500 80 112 145 185 250 335	- - 1600 88 122 165 206 280 375 - - - 1700 96 132 175 224 300 400 - - - 1400 185 243 315 -	1950 155 200 265 345 2060 160 206 272 355 2180 165 218 272 355	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	isions listed in this table do not boves in outer rings with snap ri side without ribs in thin-section e front-facing side in angular co ner rings in bearings with taper
130 9 13 16 19 130 9 13 16 19 23 140 10 16 19 23 150 10 16 19 23	- - 165 11 18 22 26 - - - - 175 11 18 22 26 - - - - 175 11 18 22 26 1 176 11 18 22 26 26 1 100 13 20 24 30	200 13 20 24 30 215 14 22 27 34 225 14 22 27 34	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 300 19 28 36 45 60 320 19 28 36 45 60 1 1 1 23 32 42 60 1 1 1 23 33 42 60 1 1 1 1 26 60	380 28 1 1	440 25 38 48 60 80 11 11 11 11 11 11 11 11 11 11 11 11 11	- - 520 31 46 60 75 100 - - - - 540 31 46 60 75 100 - - - - - 540 31 46 60 75 100 118 7 75 100 1118 7 75 <		- - - 680 37 56 72 90 118 160 - - - - 730 42 60 78 98 128 175 - - - - 730 42 60 78 98 128 175 - - - - 730 48 69 88 112 150 200	- - 820 48 69 88 112 150 200 - - - - 830 54 56 74 96 118 160 218 - - - 830 54 74 96 118 160 218 - - - 920 54 78 100 128 170 230	980 57 82 106 136 180 243 980 57 82 106 136 180 243 1030 57 82 106 136 180 243 1030 67 85 112 140 190 243	- - 1150 63 90 118 150 200 202 273 - - - - 11200 118 150 200 203 201 273 - - - - 1100 128 166 218 300 - - - - 12800 71 100 128 166 218 300	- - 1360 78 106 140 180 243 325 - - - - 1420 78 106 140 180 243 325 - - - - 1420 78 106 140 180 243 325 - - - - 1420 78 106 243 325 - - - 1420 80 241 185 250 335	- - 1600 88 122 165 280 375 - - - - 1700 55 132 175 224 300 400 - - - 1320 - 140 185 243 315 -	- - 1950 - 155 200 265 345 - - - - 2060 - 160 206 275 355 - - - - - 160 206 271 355 - - - - 165 2718 230 375 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	The chamfer dimensions listed in this table do not (a) Chamfers of grooves in outer rings with snap ri (b) Chamfers on a side without ribs in thin-section (c) Chamfers on the front-facing side in angular co (d) Chamfers on inner rings in bearings with taper
1 1	165 11 18 22 26 175 11 18 22 26 175 11 18 22 26 176 13 20 24 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		300 19 28 45 60 1 1 1 28 45 60 1 1 1 28 33 45 60 1 1 1 28 33 45 60 1 1 1 1 28 33 45 60 1 1 1 1 23 33 42 60 1 </th <th>380 28 381 28 382 28 383 28 384 48 400 28 28 28 28 28 381 28 382 28 383 48 400 28 28 28 28 28 383 28 400 28 384 48 400 28 28 28 28 28 384 48 400 28 384 48 400 28 384 48 400 28 384 48 400 28 385 38 400 28 384 48 400 28 384 48 400 28 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <</th> <th>440 25 38 48 60 1 - - 440 25 38 48 60 80 80 81 46 80 31 46 60 75 100 75 100 75 100 80 81 86 80 31 46 60 75 100 75 100 75 100 75 100 80 <t< th=""><th>520 31 46 60 75 100 1 -</th><th> 600 37 56 72 90 118 160 600 37 56 72 90 118 160 620 37 56 72 90 118 160 620 37 56 72 90 118 160 650 37 56 72 90 118 160</th><th> 680 37 56 72 90 118 160 730 42 60 78 98 128 175 730 42 60 78 98 128 175 730 48 69 88 112 150 200</th><th> 820 48 69 88 112 150 200 830 54 56 74 96 118 160 218 870 56 74 95 118 160 218 870 54 78 100 123 170 230</th><th> 980 57 82 106 136 180 243 1030 57 82 106 136 180 243 1030 57 82 106 136 180 243 1030 60 85 112 140 190 268</th><th>- - - 1150 63 90 118 150 200 203 201 273 - - - - - 100 128 166 218 300 - - - - - 100 128 166 218 300</th><th> 1360 78 106 140 180 243 325 1420 78 106 140 180 243 325 - 1420 78 106 140 180 243 325 - 1500 80 112 145 185 250 335</th><th>- - 1600 88 122 165 206 280 375 - - - 1700 96 132 175 224 300 400 - - - 1400 185 243 315 -</th><th> 1950 155 200 265 345 2060 160 206 272 355 2180 165 218 272 355 </th><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>The chamfer dimensions listed in this table do not (a) Chamfers of grooves in outer rings with snap ri (b) Chamfers on a side without ribs in thin-section (c) Chamfers on the front-facing side in angular co (d) Chamfers on inner rings in bearings with taper</th></t<></th>	380 28 381 28 382 28 383 28 384 48 400 28 28 28 28 28 381 28 382 28 383 48 400 28 28 28 28 28 383 28 400 28 384 48 400 28 28 28 28 28 384 48 400 28 384 48 400 28 384 48 400 28 384 48 400 28 385 38 400 28 384 48 400 28 384 48 400 28 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	440 25 38 48 60 1 - - 440 25 38 48 60 80 80 81 46 80 31 46 60 75 100 75 100 75 100 80 81 86 80 31 46 60 75 100 75 100 75 100 75 100 80 <t< th=""><th>520 31 46 60 75 100 1 -</th><th> 600 37 56 72 90 118 160 600 37 56 72 90 118 160 620 37 56 72 90 118 160 620 37 56 72 90 118 160 650 37 56 72 90 118 160</th><th> 680 37 56 72 90 118 160 730 42 60 78 98 128 175 730 42 60 78 98 128 175 730 48 69 88 112 150 200</th><th> 820 48 69 88 112 150 200 830 54 56 74 96 118 160 218 870 56 74 95 118 160 218 870 54 78 100 123 170 230</th><th> 980 57 82 106 136 180 243 1030 57 82 106 136 180 243 1030 57 82 106 136 180 243 1030 60 85 112 140 190 268</th><th>- - - 1150 63 90 118 150 200 203 201 273 - - - - - 100 128 166 218 300 - - - - - 100 128 166 218 300</th><th> 1360 78 106 140 180 243 325 1420 78 106 140 180 243 325 - 1420 78 106 140 180 243 325 - 1500 80 112 145 185 250 335</th><th>- - 1600 88 122 165 206 280 375 - - - 1700 96 132 175 224 300 400 - - - 1400 185 243 315 -</th><th> 1950 155 200 265 345 2060 160 206 272 355 2180 165 218 272 355 </th><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>The chamfer dimensions listed in this table do not (a) Chamfers of grooves in outer rings with snap ri (b) Chamfers on a side without ribs in thin-section (c) Chamfers on the front-facing side in angular co (d) Chamfers on inner rings in bearings with taper</th></t<>	520 31 46 60 75 100 1 -	600 37 56 72 90 118 160 600 37 56 72 90 118 160 620 37 56 72 90 118 160 620 37 56 72 90 118 160 650 37 56 72 90 118 160	680 37 56 72 90 118 160 730 42 60 78 98 128 175 730 42 60 78 98 128 175 730 48 69 88 112 150 200	820 48 69 88 112 150 200 830 54 56 74 96 118 160 218 870 56 74 95 118 160 218 870 54 78 100 123 170 230	980 57 82 106 136 180 243 1030 57 82 106 136 180 243 1030 57 82 106 136 180 243 1030 60 85 112 140 190 268	- - - 1150 63 90 118 150 200 203 201 273 - - - - - 100 128 166 218 300 - - - - - 100 128 166 218 300	1360 78 106 140 180 243 325 1420 78 106 140 180 243 325 - 1420 78 106 140 180 243 325 - 1500 80 112 145 185 250 335	- - 1600 88 122 165 206 280 375 - - - 1700 96 132 175 224 300 400 - - - 1400 185 243 315 -	1950 155 200 265 345 2060 160 206 272 355 2180 165 218 272 355	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	The chamfer dimensions listed in this table do not (a) Chamfers of grooves in outer rings with snap ri (b) Chamfers on a side without ribs in thin-section (c) Chamfers on the front-facing side in angular co (d) Chamfers on inner rings in bearings with taper
105 - - 130 9 13 16 19 19 110 - - - - 140 10 16 19 23 120 - - 140 10 16 19 23 120 - - 140 10 16 19 23	165 11 18 22 26 175 11 18 22 26 175 11 18 22 26 176 13 20 24 30	160 200 13 20 24 30 170 216 14 22 27 34 180 255 14 22 27 34	190 - - - 240 16 24 30 37 50 200 - - - - 250 16 24 30 37 50 200 - - - 250 16 24 30 37 50 200 - - 270 16 24 30 37 50	240 - - - 300 19 28 35 45 60 280 - - - - 300 19 28 36 45 60 280 - - - - 320 19 28 36 45 60 280 - - - - 330 12 33 42 60 280 - 350 12 33 42 60	300 - - 380 25 38 48 60 89 33 33 33 33 33 33 33 44 44<	360 - - 440 25 38 48 60 80<	420 - - - 520 31 46 60 75 100 4 440 - - - - 540 31 46 60 75 100 3 440 - - - - - 540 31 46 60 75 100 3 460 - - - - 560 37 56 72 90 118 3 460 - - - - 560 37 56 72 90 118 3	480 - - - 600 37 56 72 90 118 160 500 - - - - 600 37 56 72 90 118 160 500 - - - - - 620 37 56 72 90 118 160 500 - - - - 650 37 56 72 90 118 160 500 - - - - 650 37 56 72 90 118 160	560 - - - - 600 37 56 72 90 118 160 600 -	670 - - - 820 48 69 88 112 150 200 710 - - - - 870 50 74 56 118 160 218 750 - - - 870 50 74 56 118 160 218 750 54 78 78 100 128 100 230	800 - - - 900 57 82 106 136 180 213 23 850 - - - - - - - 900 57 82 106 136 180 243 850 - <	- - 1150 63 90 118 150 200 202 273 - - - - 11200 118 150 200 203 201 273 - - - - 1150 128 118 150 208 201 273 - - - - 1280 71 100 128 166 218 300	- - 1360 78 106 140 180 243 325 - - - - 1420 78 106 140 180 243 325 - - - - 1420 78 106 140 180 243 325 - - - - 1420 78 106 243 325 - - - 1420 80 241 185 250 335	- - 1600 88 122 165 280 375 - - - - 1700 55 132 175 224 300 400 - - - 1320 - 140 185 243 315 -	- - 1950 - 155 200 265 345 - - - - 2060 - 160 206 275 355 - - - - - 160 206 271 355 - - - - 165 2718 290 375 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	isions listed in this table do not boves in outer rings with snap ri side without ribs in thin-section e front-facing side in angular co ner rings in bearings with taper

					4	Dimension Series	04~24	(min.)	I		Ι			0.6	0.6 1.1	221	1.5 .1	2.1	2:1	3.21	m ω 4	444
					Series	ision les	24		I		Ι			15	16 19 24	29 33	36 	43 46	50 53	60 64 74	77 80 86	95 95
64 74	104	N 4			Diameter Series 4	Dimension Series	04	B	I		Ι			1011	13 13	19	21 23	25 27	29 31 33	35 37 42	45 48 52	54 55 58
					ā		D		T		Ι		111	30 32	37 42 52	62 72 -	80 90	1100 1100	120 130 140	150 160 180	190 200 210	225 240 250
						ision ies	03~33	in.)	I		Ι	0.2	0.3	0.3 0.3 0.6	0.6			1.1 1.5 1.5	1.5 2	2.1 2.1	3.11 3.1	ოოო
						Dimension Series	83	r (min.)	I		I				0.3 0.3 0.3	0.6 0.6	0.6 0.6	0.6			1.5 2.1	522
633	333	N 33			m		33		I		Ι		9 01 13 0	15 16	19 19	22.2 22.2 25	25.4 30 30.2	32 34.9 36.5	39.7 44.4 49.2	54 58.7 63.5	68.3 68.3 73	73 77.8 82.6
623	53 53 53	N 23		223	Series	eries	23		I		Ι		=	13 13 14	17 17	19 21 21	24 27	33328	8648	51 46 51	88 82 88 82	49 79 75
					Diameter Series	Dimension Series	13	В	I		I											5
82	13	N 3		213		Dime	8		I		I	ي ا	5 9 7	9 9 10	11 12 13	15 16	17 18 19	3228	25 27 29	8833	33 39 41	44 45 45
							83		I		Ι				ດດດ	1011	13 13	41 16 16	17 21	22 25 25	30 27 30 28	888
							D		I		Ι	13	16 22	26 28 30	35 37 42	47 52 56	62 68 72	75 80 90	100 110 120	130 140 150	160 170 180	190 200 215
						Dimension Series	02~42	r (min.)	Ι		Ι	0.15	0.3 0.3 0.3	0.3	0.6 0.6 0.6	0.6			1.1 1.1 1.5	1.5 1.5	1.5 2 2	2.1 2.1
						Dime	82	r (n	T		Ι	0.1	0.15 0.15 0.2	0.3	0.3	0.3	0.3 0.6 0.6	0.6 0.6 0.6	0.6 0.6 0.6			<u></u>
							42		T		Ι				5	2222		869		29 29 29	80 88 81	89 22 88 88 88 88 88 88 88 88 88 88 88 88
632	222	N 32		232	ries 2	ŝ	32		I		I	1 50	7 8 10	1211	14.3 15.9 15.9	17.5 20.6 20.6	20.6 23 23.8	25 27 30.2	30.2 33.3 33.3	36.5 38.1 39.7	41.3 44.4 49.2	52.4 55.6 60.3
622	42	N 22		222	Diameter Series 2	on Series	22	В	I		Ι				1 1 1 4 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	16 18 18	18 19 20	21 23 23	23 23 25	31 31 31	31 33 36	40 43 46
					Diam	Dimension	12															
322	12	N 2					02		T		Ι	4	യ വ വ	∽∞∞	9 11 11 10	12 14 14 12	15 16 16	17 18	19 20 21	22 23 24	25 26 28	32 32 34 32
							82		T		I	2.5	9.5 4	ومم	~ ~ 8	ထတတ	666	1212	664	18 18	18 19 21	22 24 25
							D		T		Ι	10	13 16 19	22 24 26	30 35 35	40 47 50	52 58 62	65 72 80	85 90 100	110 120 125	130 140 150	160 170 180
						Imension Series	11~41	r (min.)	1		Ι											000
						Dime	0	r(i	I		I											=
				241	51		41								81 81 81							
		NN 31		231	Diameter Series	Series			Ι		Ι		1 ~ 0	12 13	<u>4</u> 44	15 18 19	19 20 21	23 25 26	26 26 30	34 34 34	37 37 41	45 52 52
					Diamete	Dimension	21	В						9 10 10	12	15 16	16 17 18				885	888
						Dim	=		1		Ι											8
							6		I		1		111		111	111	111		111			
ow ings	sgn ngs	cal rings	oller js	Roller			D						5 6 6 1									160
Single-Row Ball Bearings	Double-Row Ball Bearings	Cylindrik Mer Beau	leedle Ro Bearing	Spherical Roller Bearings			q		0.6	1.5	2	2.5			12 10		25 28 30	32 35 40			75 80 85	-
	-8	Ro	Z	Sp	r I	əquır	ıN ər	og			2	ۍ ا	6 5 4	7 8 9	828	898	02 08 08	00 88	198	2624	15 16	20 3 3 3 3 3

440	വവവ	യവവ	000	6 7.5 7.5	7.5 9.5 9.5	9.5 9.5	1222	15	15 15	15					
100 118 118	128 132 138	142 145 150	155 160 180	190 206 224	236 250 265	280 300 315	325 335 345	365 375 400	412 438 450	475					
65 72	78 85 85	95 95	98 102 115	122 132 140	150 155 165	180 200	206 212 218	230 236 250	258 272 280	290			$ $ $ $		
260 280 310	340 360 380	400 420 440	460 480 540	580 620 670	710 750 800	850 900 950	980 1030 1060	1120 1150 1220	1280 1360 1420	1500	111	111			
ოოო	444	444	വവവ	992	7.5 7.5 7.5	7.5 7.5 7.5	9.5 9.5	9.5 12 12	15 15	15 15	15 19	19			
9.9.1 9.9.1	ω 4														
87.3 92.1 106	112 118 128	136 140 150	155 165 180	195 206 224	236 258 272	300 308 308	315 345 365	375 388 412	438 462 488	515 530 560	600 630 650	670 710 —			
77 80 86	93 102 108	114 120 126	132 138 145	155 165 175	185 200 212	224 230 243	250 265 280	290 300 325	335 355 375	400 412 438	462 488 500	515 545 			
53 57	66 75 75	79 84 88	92 97 106	114 123 132	140 155 165	170 175 185	190 200 212	218 230 243	258 272 280	300 308 325	355 375 388	400 412 			
49 50 55	58 65 65	68 72 75	78 80 88	95 102 108	109 112 118	125 128 136	136 145 155	160 170 180	190 200 206	218 224 236	258 272 280	290 300			
37 44 42	1 50 48	111										111			
225 240 260	280 300 320	340 360 380	400 420 460	500 540 580	620 670 710	750 780 820	850 950	980 1030 1090	1150 1220 1280	1360 1420 1500	1600 1700 1780	1850 1950 —			
2.1	ოოო	ω44	444	400	و م م	999	7.5 7.5 7.5	7.5 7.5 9.5	9.5 9.5 12	15 15	15 15 15	15 15			
ا تى 1															
95 95	100 1109 118	128 140 140	150 160 180	200 218 218	243 258 280	290 300 315	335 345 365	388 412 450	475 488 515	545 560 615	615 650 670	710 750 —			
65.1 69.8 76	888 888 888 80	104 110 112	120 128 144	160 174 176	192 208 224	232 240 256	272 280 296	310 336 355	365 388 412	438 450 475	488 515 515	530			wing:
50 53 58	64 68 73	86 86 86	92 98 108	120 130 130	140 150 165	170 175 185	195 200 212	224 243 258	272 280 300	315 325 345	355 375 388	412 425 			e follo [.] Igs
42	46 50 54	58 62 62	65 70 78	85 90 90	98 105 118	122 132 140	150 155 165	170 185 200	206 212 230	243 250 265	272 280 300	315 330			/ to th
36 38 40	40 45 45	48 52 52	55 58 65	72 80 80	85 92 92	95 95 103	109 112 118	125 136 145	150 155 165	175 180 195	200 206 218	230 243			cessarily apply to the fo grooves indrical roller bearings
27 28 —															essaril groove ndrica
190 200 215	230 250 270	290 310 320	340 360 400	440 480 500	540 580 620	650 680 720	760 790 830	870 920 980	1030 1090 1150	1220 1280 1360	1420 1500 1580	1660 1750 	111	111	do not necessarily apply to the following: snap ring grooves section cylindrical roller bearings
000	252 21	3551 357	0 0 4	440	വവവ	യ വ വ	6 7.5	7.5 7.5 7.5	7.5 7.5 7.5	7.5 9.5 9.5	9.5 12	12 12	15 15 15	15 19 19	s table do not nec gs with snap ring in thin-section cyl
1.1.1	2 1.5 2 1.5	222	ოოო	444	വവവ	യ വ വ	000	6 7.5 7.5	7.5 7.5 7.5	7.5 9.5 9.5	9.5 12	12 12 12			nis tab ngs wit in thir
69 69 80 80	85 85 100	109 109 118	128 140 150	160 180 180	200 218 243	243 243 250	280 280 300	308 325 335	355 375 400	412 438 475	475 500 515	545 580 600	630 670 710	750 775 800	ons listed in this table do not necessarily les in outer rings with snap ring grooves e without ribs in thin-section cylindrical
56 56 62	64 80 80	88 88 98 88 98	104 112 120	128 144 146	160 176 190	192 194 200	224 226 240	248 264 272	280 300 315	336 345 365	375 400 412	438 462 475	475 500 530	560 580 600	S S S
42 48 48	48 50 60	66 66 72	78 82 88	95 106 106	118 128 140	140 145	165 165 175	180 195	206 218 230	243 250 272	272 290 300	315 335 345	365 388 400	425 450 462	lensior groove a side
8333	38 46	51 51	60 65 69	74 82 82	90 106	106 112	122 122 132	136 145 150	160 170 175	185 195 206	212 224 230	243 258 265	280 308 308	325 345 355	The chamfer dimensi (a) Chamfers of groor (b) Chamfers on a sic
2225	25 31	정정문	448	22 22 20	8128	8 8 8	8888	100 106	115 122 128	136 140 150	155 165 165	175 185 190			The chamfer dimension (a) Chamfers of groove (b) Chamfers on a side
175 180 200	210 225 250	270 280 300	320 340 370	400 440 460	500 540 580	600 620 650	700 720 760	790 830 870	920 980 1030	1090 1150 1220	1280 1360 1420	1500 1580 1660	1750 1850 1950	2060 2180 2300	p) (p) (p) (p) (p) (p) (p) (p) (p) (p) (
			190 220							670 710 750	800 850 900	950 1000 1060	1120 1180 1250	1320 1400 1500	Remarks
283	30 28	32 34 36	38 44	52 56	66 64 68	72 76 80	88 92	808	888	/670 /710 /750	/800 /850 /900	000	888	/1320 /1400 /1500	Re

Table 6. 1 Boundary Dimensions of Radial Bearings (Excluding Tapered Roller Bearings) — (2)

Table 6. 2 Boundary Dimensions of

Tapered	Roller	Bearings
---------	--------	----------

Tape Ro Bear	ller					329						32	0 X				330					33	31		
					Diam	eter Se	eries 9							Diam	eter Se	ries O					Di	ameter	Series	s 1	
Bore Number	d			Dim	nensior	n Serie	s 29 Ⅱ		Cha Dime	mfer nsion 0.R.		Dime	nsion S 20	Series	Dime	nsion S 30	Series	Chai Dime	mfer nsion 0.R.		Dime	nsion S 31	Series	Char Dime	
Bore N	u	D	В	С	Т	В	С	Т	r (1		D	В	С	Т	В	С	Т	r (r		D	В	С	Т	<i>𝔅</i> (r	
00 01 02	10 12 15						_ _ _		_ _ _		 28 32	 11 12	_ _ _		— 13 14		— 13 14	 0.3 0.3	 0.3 0.3	 					
03 04 /22	17 20 22		 11 		— 11.6 —	12 12 12	9 9		 0.3 0.3	 0.3 0.3	35 42 44	13 15 15	— 12 11.5	13 15 15	15 17 —		15 17 —	0.3 0.6 0.6	0.3 0.6 0.6						
05 /28 06	25 28 30	42 45 47	11 		11.6 — 11.6	12 12 12	9 9 9	12 12 12	0.3 0.3 0.3	0.3 0.3 0.3	47 52 55	15 16 17	11.5 12 13	15 16 17	17 20	14 — 16	17 20	0.6 1 1	0.6 1 1	 _					
/32 07 08	32 35 40	52 55 62	— 13 14		— 14 15	15 14 15	10 11.5 12	14 14 15	0.6 0.6 0.6	0.6 0.6 0.6	58 62 68	17 18 19	13 14 14.5	17 18 19	 21 22	— 17 18	 21 22	1 1 1	1 1 1	— — 75	— 26	— — 20.5	— 26	— — 1.5	— — 1.5
09 10 11	45 50 55	68 72 80	14 14 16		15 15 17	15 15 17	12 12 14	15 15 17	0.6 0.6 1	0.6 0.6 1	75 80 90	20 20 23	15.5 15.5 17.5	20 20 23	24 24 27	19 19 21	24 24 27	1 1 1.5	1 1 1.5	80 85 95	26 26 30	20.5 20 23	26 26 30	1.5 1.5 1.5	1.5 1.5 1.5
12 13 14	60 65 70	85 90 100	16 16 19		17 17 20	17 17 20	14 14 16	17 17 20	1 1 1	1 1 1	95 100 110	23 23 25	17.5 17.5 19	23 23 25	27 27 31	21 21 25.5	27 27 31	1.5 1.5 1.5	1.5 1.5 1.5	100 110 120	30 34 37	23 26.5 29	30 34 37	1.5 1.5 2	1.5 1.5 1.5
15 16 17	75 80 85	105 110 120	19 19 22		20 20 23	20 20 23	16 16 18	20 20 23	1 1 1.5	1 1 1.5	115 125 130	25 29 29	19 22 22	25 29 29	31 36 36	25.5 29.5 29.5	31 36 36	1.5 1.5 1.5	1.5 1.5 1.5	125 130 140	37 37 41	29 29 32	37 37 41	2 2 2.5	1.5 1.5 2
18 19 20	90 95 100	125 130 140	22 22 24		23 23 25	23 23 25	18 18 20	23 23 25	1.5 1.5 1.5	1.5 1.5 1.5	140 145 150	32 32 32	24 24 24	32 32 32	39 39 39	32.5 32.5 32.5	39 39 39	2 2 2	1.5 1.5 1.5	150 160 165	45 49 52	35 38 40	45 49 52	2.5 2.5 2.5	2 2 2
21 22 24	105 110 120	145 150 165	24 24 27		25 25 29	25 25 29	20 20 23	25 25 29	1.5 1.5 1.5	1.5 1.5 1.5	160 170 180	35 38 38	26 29 29	35 38 38	43 47 48	34 37 38	43 47 48	2.5 2.5 2.5	2 2 2	175 180 200	56 56 62	44 43 48	56 56 62	2.5 2.5 2.5	2 2 2
26 28 30	130 140 150	180 190 210	30 30 36		32 32 38	32 32 38	25 25 30	32 32 38	2 2 2.5	1.5 1.5 2	200 210 225	45 45 48	34 34 36	45 45 48	55 56 59	43 44 46	55 56 59	2.5 2.5 3	2 2 2.5	 					
32 34 36	160 170 180	220 230 250	36 36 42		38 38 45	38 38 45	30 30 34	38 38 45	2.5 2.5 2.5	2 2 2	240 260 280	51 57 64	38 43 48	51 57 64				3 3 3	2.5 2.5 2.5	 					
38 40 44	190 200 220	260 280 300	42 48 48		45 51 51	45 51 51	34 39 39	45 51 51	2.5 3 3	2 2.5 2.5	290 310 340	64 70 76	48 53 57	64 70 76				3 3 4	2.5 2.5 3						
48 52 56	240 260 280	320 360 380	48 — —		51 — —	51 63.5 63.5	39 48 48	51 63.5 63.5	3 3 3	2.5 2.5 2.5	360 400 420	76 87 87	57 65 65	76 87 87		 		4 5 5	3 4 4			 			
60 64 68 72	300 320 340 360	420 440 460 480				76 76 76 76	57 57 57 57	76 76 76 76	4 4 4	3 3 3	460 480 	100 100 	74 74 —	100 100 —				5 5 —	4 4 						
64 68 72	320	440 460 480	_	 ther :	 Series	76 76 76	57 57 57	76 76 76	4 4 4	3 3 3	480 — —	100 	74 — —	100 — —	by IS	_		5	4				_		

	3(02			322				332				303	3 or 3)3D			313				323			Tape Ro Bear	ller
		mensi eries (Di	amete mensi eries 2		Di	imensi Series 3		Cha Dime I.R.	mfer nsion 0.R.		Di		on Ser 13	ies	Di	eter Se mensi eries 1			mensi eries 2		Cha Dime I.R.	mfer nsion 0.R.	d	Bore Number
D	В	С	T	В	С	Т	В	С	Т	r (1	min.)	D	В	С	C (1)	Т	В	С	Т	В	С	Т	r (1	nin.)		Bore
30 32 35	9 10 11	 9 10	9.7 10.75 11.75	14 14 14	_ _ _	14.7 14.75 14.75		_ _ _		0.6 0.6 0.6	0.6 0.6 0.6	35 37 42	11 12 13	- - 11		11.9 12.9 14.25			_ _ _	17 17 17	— 14	17.9 17.9 18.25	0.6 1 1	0.6 1 1	10 12 15	00 01 02
40 47 50	12 14 14	11 12 12	13.25 15.25 15.25	16 18 18	14 15 15	17.25 19.25 19.25		=		1 1 1	1 1 1	47 52 56	14 15 16	12 13 14		15.25 16.25 17.25			_ _	19 21 21	16 18 18	20.25 22.25 22.25	1.5	1 1.5 1.5	17 20 22	03 04 /22
52 58 62	15 16 16	13 14 14	16.25 17.25 17.25	18 19 20	15 16 17	19.25 20.25 21.25	24	18 19 19.5	22 24 25	1 1 1	1 1 1	62 68 72	17 18 19	15 15 16	13 14 14	18.25 19.75 20.75				24 24 27	20 20 23	25.25 25.75 28.75	1.5	1.5 1.5 1.5	25 28 30	05 /28 06
65 72 80	17 17 18	15 15 16	18.25 18.25 19.75	21 23 23	18 19 19	22.25 24.25 24.75	26 28 32	20.5 22 25	26 28 32	1 1.5 1.5	1 1.5 1.5	75 80 90	20 21 23	17 18 20	15 15 17	21.75 22.75 25.25			_ 	28 31 33	24 25 27	29.75 32.75 35.25	1.5 2 2	1.5 1.5 1.5	32 35 40	/32 07 08
85 90 100	19 20 21	16 17 18	20.75 21.75 22.75	23 23 25	19 19 21	24.75 24.75 26.75	32	25 24.5 27	32 32 35	1.5 1.5 2	1.5 1.5 1.5	100 110 120	25 27 29	22 23 25	18 19 21	27.25 29.25 31.5				36 40 43	30 33 35	38.25 42.25 45.5	2 2.5 2.5	1.5 2 2	45 50 55	09 10 11
110 120 125	22 23 24	19 20 21	23.75 24.75 26.25	28 31 31	24 27 27	29.75 32.75 33.25	41	29 32 32	38 41 41	2 2 2	1.5 1.5 1.5	130 140 150	31 33 35	26 28 30	22 23 25	33.5 36 38		 	 	46 48 51	37 39 42	48.5 51 54	3 3 3	2.5 2.5 2.5	60 65 70	12 13 14
130 140 150	25 26 28	22 22 24	27.25 28.25 30.5	31 33 36	27 28 30	33.25 35.25 38.5	41 46 49	31 35 37	41 46 49	2 2.5 2.5	1.5 2 2	160 170 180	37 39 41	31 33 34	26 27 28	40 42.5 44.5			_ _ _	55 58 60	45 48 49	58 61.5 63.5	3 3 4	2.5 2.5 3	75 80 85	15 16 17
160 170 180	30 32 34	26 27 29	32.5 34.5 37	40 43 46	34 37 39	42.5 45.5 49	55 58 63	42 44 48	55 58 63	2.5 3 3	2 2.5 2.5	190 200 215	43 45 47	36 38 39	30 32 —	46.5 49.5 51.5	— 51	— — 35	— — 56.5	64 67 73	53 55 60	67.5 71.5 77.5	4 4 4	333	90 95 100	18 19 20
190 200 215	36 38 40	30 32 34	39 41 43.5	50 53 58	43 46 50	53 56 61.5	68 —	52 —	68 —	3 3 3	2.5 2.5 2.5	225 240 260	49 50 55	41 42 46		53.5 54.5 59.5	53 57 62	36 38 42	58 63 68	77 80 86	63 65 69	81.5 84.5 90.5	4 4 4	3 3 3	105 110 120	21 22 24
230 250 270	40 42 45	34 36 38	43.75 45.75 49	64 68 73	54 58 60	67.75 71.75 77		=		4 4 4	3 3 3	280 300 320	58 62 65	49 53 55		63.75 67.75 72	66 70 75	44 47 50	72 77 82	93 102 108	78 85 90	98.75 107.75 114	5 5 5	4 4 4	130 140 150	26 28 30
290 310 320	48 52 52	40 43 43	52 57 57	80 86 86	67 71 71	84 91 91			 	4 5 5	3 4 4	340 360 380	68 72 75	58 62 64	 	75 80 83	79 84 88		87 92 97	114 120 126	95 100 106	121 127 134	5 5 5	4 4 4	160 170 180	32 34 36
340 360 400	55 58 65	46 48 54	60 64 72	92 98 108	75 82 90	97 104 114				5 5 5	4 4 4	400 420 460	78 80 88	65 67 73		86 89 97	92 97 106		101 107 117	132 138 145	109 115 122	140 146 154	6 6 6	5 5 5	190 200 220	38 40 44
440 480 500	72 80 80	60 67 67	79 89 89	120 130 130	100 106 106	127 137 137		_		5 6 6	4 5 5	500 540 580	95 102 108	80 85 90		105 113 119	114 123 132		125 135 145	155 165 175	132 136 145	165 176 187	6 6 6	5 6 6	240 260 280	48 52 56
540 580 	85 92 —	71 75 —	96 104 	140 150 —	115 125 —	149 159 —			 	6 6 —	5 5 —			 	 				 	 					300 320 340 360	60 64 68 72

 In Diameter Series 9, Classification I refers to specifications of the old standard, while Classification II refers to those specified by ISO. Dimension Series without classifications conform to dimensions (D, B, C, T) specified by ISO.

3. The chamfer dimensions listed are the minimum permissible dimensions specified by ISO. They do not apply to chamfers on the front face.

mm are designated as 313.

Units: mm

-

-

					,	(-)			1										-	Un	its: mm	
			513		523							514		524							Thrus	gs.
		293									294										Spherica Roller	al Thru Brgs.
			Diam	ieter Se	ries 3							Diam	eter Se	ries 4				Diam	neter Se	ries 5		
		1	imensi	on Serie	es		-				0	imensi	on Serie	S		-			Dimension Series	1		Bora Mumbar
D	73	93	13	23	2	3	2 (min)	r_1 (min.)	D	74	94	14	24	2	4	1 (min)	γ_1 (min.)	D	95	१ (min.)	d	IV
D			Г		Central	Washer	, (mm.)	1 (11111.)				Г		Central	Washer	, (iiiii.)	1 (11111.)		Т	7 (mm.)	u	ć
					d_2	В								d_2	В							
20 24 26	7 8 8	=	11 12 12		_ _ _		0.6 0.6 0.6		 							_ _ _			Ξ		4 6 8	
30 32 37	9 9 10		14 14 15	_ _ _			0.6 0.6 0.6				_ _ _	 _	 _	 			- - -		Ξ		10 12 15	(
40 47 52	10 12 12	=	16 18 18	— — 34			0.6 1 1	— — 0.3	 60	— 16		 24	 45	— 15	— — 11	- - 1	— — 0.6	52 60 73	21 24 29	1 1 1.1	17 20 25	
60 68 78	14 15 17	 22	21 24 26	38 44 49	25 30 30	9 10 12	1 1 1	0.3 0.3 0.6	70 80 90	18 20 23	24 27 30	28 32 36	52 59 65	20 25 30	12 14 15	1 1.1 1.1	0.6 0.6 0.6	85 100 110	34 39 42	1.1 1.1 1.5	30 35 40	
85 95 105	18 20 23	24 27 30	28 31 35	52 58 64	35 40 45	12 14 15	1 1.1 1.1	0.6 0.6 0.6	100 110 120	25 27 29	34 36 39	39 43 48	72 78 87	35 40 45	17 18 20	1.1 1.5 1.5	0.6 0.6 0.6	120 135 150	45 51 58	2 2 2.1	45 50 55	
110 115 125	23 23 25	30 30 34	35 36 40	64 65 72	50 55 55	15 15 16	1.1 1.1 1.1	0.6 0.6 1	130 140 150	32 34 36	42 45 48	51 56 60	93 101 107	50 50 55	21 23 24	1.5 2 2	0.6 1 1	160 170 180	60 63 67	2.1 2.1 3	60 65 70	
135 140 150	27 27 29	36 36 39	44 44 49	79 79 87	60 65 70	18 18 19	1.5 1.5 1.5	1 1 1	160 170 180	38 41 42	51 54 58	65 68 72	115 120 128	60 65 65	26 27 29	2 2.1 2.1	1 1 1.1	190 200 215	69 73 78	3 3 4	75 80 85	
155 170 190	29 32 36	39 42 48	50 55 63	88 97 110	75 85 95	19 21 24	1.5 1.5 2	1 1 1	190 210 230	45 50 54	60 67 73	77 85 95	135 150 166	70 80 90	30 33 37	2.1 3 3	1.1 1.1 1.1	225 250 270	82 90 95	4 4 5	90 100 110	
210 225 240	41 42 45	54 58 60	70 75 80	123 130 140	100 110 120	27 30 31	2.1 2.1 2.1	1.1 1.1 1.1	250 270 280	58 63 63	78 85 85	102 110 112	177 192 196	95 100 110	40 42 44	4 4 4	1.5 2 2	300 320 340	109 115 122	5 5 5	120 130 140	
250 270 280	45 50 50	60 67 67	80 87 87	140 153 153	130 140 150	31 33 33	2.1 3 3	1.1 1.1 1.1	300 320 340	67 73 78	90 95 103	120 130 135	209 226 236	120 130 135	46 50 50	4 5 5	2 2 2.1	360 380 400	125 132 140	6 6 6	150 160 170	
300 320 340	54 58 63	73 78 85	95 105 110	165 183 192	150 160 170	37 40 42	3 4 4	2 2 2	360 380 400	82 85 90	109 115 122	140 150 155	245 	140 —	52 —	5 5 5	3 — —	420 440 460	145 150 155	6 6 7.5	180 190 200	
360 380 420	63 63 73	85 85 95	112 112 130	_ _ _			4 4 5		420 440 480	90 90 100	122 122 132	160 160 175				6 6 6		500 540 580	170 180 190	7.5 7.5 9.5	220 240 260	
440 480 500	73 82 82	95 109 109	130 140 140	_ _ _			5 5 5	_ _ _	520 540 580	109 109 118	145 145 155	190 190 205	_ _ _			6 6 7.5		620 670 710	206 224 236	9.5 9.5 9.5	280 300 320	

Table 6. 3 Boundary Dimensions of

Thrust B	Ball Brgs.									511					512		522			
Spherica	-													292						
			Diam	ieter Sei	ries O			Diam	neter Se	ries 1			1		Dian	neter Sei	ries 2			
ber			Dime	ension S	eries			Dime	ension S	Series				l	Dimensi	on Serie	S			
Bore Number	d	D	70	90	10		D	71	91	11		D	72	92	12	22	2	2		
Bor		D		Т] % (min.)	D		Т		$\gamma(min.)$	D			Т		Central	Washer	17 (min.)	$\gamma_1(\min.)$
				1					1								d_2	В		
4 6 8	4 6 8	12 16 18	4 5 5		6 7 7	0.3 0.3 0.3					=	16 20 22	6 6 6		8 9 9				0.3 0.3 0.3	
00 01 02	10 12 15	20 22 26	5 5 5		7 7 7	0.3 0.3 0.3	24 26 28	6 6 6		9 9 9	0.3 0.3 0.3	26 28 32	7 7 8	_ _ _	11 11 12	 22	— — 10	5	0.6 0.6 0.6	— — 0.3
03 04 05	17 20 25	28 32 37	5 6 6	 _	7 8 8	0.3 0.3 0.3	30 35 42	6 7 8		9 10 11	0.3 0.3 0.6	35 40 47	8 9 10		12 14 15	 26 28	 15 20	6 7	0.6 0.6 0.6	 0.3 0.3
06 07 08	30 35 40	42 47 52	6 6 6		8 8 9	0.3 0.3 0.3	47 52 60	8 8 9		11 12 13	0.6 0.6 0.6	52 62 68	10 12 13	_ _ _	16 18 19	29 34 36	25 30 30	7 8 9	0.6 1 1	0.3 0.3 0.6
09 10 11	45 50 55	60 65 70	7 7 7		10 10 10	0.3 0.3 0.3	65 70 78	9 9 10		14 14 16	0.6 0.6 0.6	73 78 90	13 13 16		20 22 25	37 39 45	35 40 45	9 9 10	1 1 1	0.6 0.6 0.6
12 13 14	60 65 70	75 80 85	7 7 7		10 10 10	0.3 0.3 0.3	85 90 95	11 11 11		17 18 18	1 1 1	95 100 105	16 16 16	21 21 21	26 27 27	46 47 47	50 55 55	10 10 10	1 1 1	0.6 0.6 1
15 16 17	75 80 85	90 95 100	7 7 7		10 10 10	0.3 0.3 0.3	100 105 110	11 11 11		19 19 19	1 1 1	110 115 125	16 16 18	21 21 24	27 28 31	47 48 55	60 65 70	10 10 12	1 1 1	1 1 1
18 20 22	90 100 110	105 120 130	7 9 9	_ _ _	10 14 14	0.3 0.6 0.6	120 135 145	14 16 16	 21 21	22 25 25	1 1 1	135 150 160	20 23 23	27 30 30	35 38 38	62 67 67	75 85 95	14 15 15	1.1 1.1 1.1	1 1 1
24 26 28	120 130 140	140 150 160	9 9 9	_ _ _	14 14 14	0.6 0.6 0.6	155 170 180	16 18 18	21 24 24	25 30 31	1 1 1	170 190 200	23 27 27	30 36 36	39 45 46	68 80 81	100 110 120	15 18 18	1.1 1.5 1.5	1.1 1.1 1.1
30 32 34	150 160 170	170 180 190	9 9 9	_ _ _	14 14 14	0.6 0.6 0.6	190 200 215	18 18 20	24 24 27	31 31 34	1 1 1.1	215 225 240	29 29 32	39 39 42	50 51 55	89 90 97	130 140 150	20 20 21	1.5 1.5 1.5	1.1 1.1 1.1
36 38 40	180 190 200	200 215 225	9 11 11	_ _ _	14 17 17	0.6 1 1	225 240 250	20 23 23	27 30 30	34 37 37	1.1 1.1 1.1	250 270 280	32 36 36	42 48 48	56 62 62	98 109 109	150 160 170	21 24 24	1.5 2 2	2 2 2
44 48 52	220 240 260	250 270 290	14 14 14	_ _ _	22 22 22	1 1 1	270 300 320	23 27 27	30 36 36	37 45 45	1.1 1.5 1.5	300 340 360	36 45 45	48 60 60	63 78 79	110 — —	190 — —	24 — —	2 2.1 2.1	2
56 60 64	280 300 320	310 340 360	14 18 18	 24 24	22 30 30	1 1 1	350 380 400	32 36 36	42 48 48	53 62 63	1.5 2 2	380 420 440	45 54 54	60 73 73	80 95 95			_ _ _	2.1 3 3	

Remarks
 Dimension Series 22, 23, and 24 are double-direction bearings.
 The maximum permissible outside diameter of shaft and central washers and minimum permissible bore diameter of housing washers are omitted here (refer to the bearing tables for thrust bearings).

Diameter Series 5 Dimension Series

95

Т

250 265

272 290 308

D

750 780 820 243 12 340 68

850 900 950

980 1000 1060 315 315 335

1090 335 355 375 15

1150 1220

_ _ _

—

_

_

_

_ _

_

r (min.) 🖓 (min.

_

_

_

_

_

_

_____ _____ _____

514

294

74 94

524

24

Central Washer

_ 7.5 7.5 9.5 _

_

_ 12 15 15 _ 1280 1320 1400 388 388 412

_ 15 15 15 ____

_ 15 15 19 _

_ 19 19 19

_

_ _

_

_

9.5 9.5 9.5

9.5

12 12

15 15 15

 d_2 B

_ _ 7.5 7.5 7.5

_

_

_

_

_

_

_

_

_

_ _

_____ _____

Diameter Series 4

_

_ _

_ _

_

_ _ _

_

_ _

_ _

Dimension Series

14 24

Т

Units: mm Thrust Ball Brgs.

d

360 380

400 420 440

460 480 500

530 560 600

630 670 710

750 800 850

900 950 1000

(min.)

12 12

12

15 15

15

15 15

15 15

15

15 15

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

Spherical Thrust Roller Brgs.

er

Bore Nu

72 76

80

84 88

92

96 /500

/530

/560 /600

/630

/670 /710

/750

/800 /850

/900 /950

/1000

1060 /1060 1120 /1120

1180 /1180

1250 /1250

/1320

/1400

/1500

/1600

/1700

/2000

2120 /2120 2240 /2240 2360 /2360 2500 /2500

1320 1400

1500 1600 1700

1800 1900 2000 /1800 /1900

BOUNDARY DIMENSIONS AND BEARING DESIGNATIONS

Table 6. 3 Boundary Dimensions of	Thrust Bearings (Flat Seats) — (2)
-----------------------------------	------------------------------------

513

523

23

Central Washer

_

 d_2 B

_ _

_ _ 6

_ _

_ _ 6

_

_

_

_

_

r (min.) r_1 (min

_

_

_

_

_

_

_

_

_

_

_

5

6 6

6 6

7.5 7.5 7.5

12 12 12

15 15 15

19 19

_

_

_

____ 9.5 9.5 9.5

____ 9.5 9.5 12

_

_

_

_

_ 19 19 19

_

_

_

_ _ _ D

620 125 125 132 170 170 175 220 220 224

640 670

710

730 780

800 850 870 155 165 165 206 224 224 265 290 290

920 175 190 195 236 250 258 308 335 335

980 1030

1090 1150 1220 206 218 230 280 290 308 365 375 400 ____

1280 1360 1440 236 250

1520

1600 _

1670

1770

1860 1950 _

2050 2160 2280

____ _

_

140 140 155 185 185 206 243 243 265

> 315 335 354 412 438

372 390 402

426 444 462 _ ____

480 505 530 _

_

_ _ _ _

_

_ _

_ _

_ _

_

_

_

_

_

_ _

_

_

_

_

_

_

Diameter Series 3

_

_ _ _ 6

_

_

_

_ _ _

_ _

_

_ _

_ _

Dimension Series

13 23

160 160 175

175 180 190

195 195 195

224 236

250 258 272 ____

290 300 315

335

355

_ _ _

_ _

_

_ _ _

_ _ _

_

_

_

_ _

160 212

					1	1		-			1	1			1				1				т т
Thrust B	ů									511					512		522						
Spherica Roller	al Thrust Brgs.													292									293
			Diam	neter Se	ries O			Dian	neter Se	ries 1					Diam	neter Se	ries 2						
ber			Dime	ension S	Series			Dim	ension S	eries				I	Dimensi	on Serie	s						Dii
Bore Number	d		70	90	10			71	91	11			72	92	12	22	2	2				73	93
Bore		D				1 <i>r</i> (min.)	D				1 <i>ℓ</i> (min.)	D					Central	Washer	ℓ (min.)	$\gamma_1(min.)$	D		
				Т					Т						Т		d_2	В	1				Т
68	340	380	18	24	30	1	420	36	48	64	2	460	54	73	96	_	_	_	3	_	540	90	122
72 76	360 380	400 420	18 18	24 24	30 30	1	440 460	36 36	48 48	65 65	2	500 520	63 63	85 85	110 112	=	=	_	4	=	560 600	90 100	122 132
80	400	440	18	24	30	1	480	36	48	65	2	540	63	85	112	_	_	_	4	_	620	100	132
84 88	420 440	460 480	18 18	24 24	30 30	1	500 540	36 45	48 60	65 80	2	580 600	73 73	95 95	130 130	=	=	_	5	=	650 680	103 109	140
92	460	500	18	24	30	1	560	45	60	80	2.1	620	73	95	130	_	_	_	5		710	112	150
96 /500	400 480 500	520 540	18 18	24 24 24	30 30		580 600	45 45 45	60 60	80 80	2.1	650 670	78 78	103 103	135 135	_		_	5		730 750	112 112 112	150 150
/530 /560 /600	530 560 600	580 610 650	23 23 23	30 30 30	38 38 38	1.1 1.1 1.1	640 670 710	50 50 50	67 67 67	85 85 85	3 3 3	710 750 800	82 85 90	109 115 122	140 150 160	-	_	_	5 5 5	_	800 850 900	122 132 136	160 175 180
/630 /670	630 670	680 730	23 27	30 36	38 45	1.1	750 800	54 58	73	95 105	3	850 900	100 103	132 140	175 180	_	=	_	6	=	950 1000	145 150	190 200
/710	710	780	32	42	53	1.5	850	63	85	112	4	950	109	145	190	_	-	-	6	-	1060	160	212
/750 /800	750 800	820 870	32 32	42 42	53 53	1.5 1.5	900 950	67 67	90 90	120 120	4	1000 1060	112 118	150 155	195 205	=	=	_	6 7.5	=	1120 1180	165 170	224 230
/850	850	920	32	42	53	1.5	1000	67	90	120	4	1120	122	160	212	-	-	-	7.5	-	1250	180	243
/900 /950	900 950	980 1030	36 36	48 48	63 63	2	1060 1120	73 78	95 103	130 135	5 5	1180 1250	125 136	170 180	220 236	=	=	_	7.5 7.5	=	1320 1400	190 200	250 272
/1000	1000	1090	41	54	70	2.1	1180	82	109	140	5	1320	145	190	250	-	-	-	9.5	-	1460	-	276
/1060 /1120	1060 1120	1150 1220	41 45	54 60	70 80	2.1	1250 1320	85 90	115 122	150 160	5	1400 1460	155	206 206	265	_	=	_	9.5 9.5	=	1540 1630	=	288 306
/1180	1180	1280	45	60	80	2.1	1400	100	132	175	6	1520	-	206	-	-	-	-	9.5	-	1710	-	318
/1250 /1320	1250 1320	1360 1440	50	67	85 95	3	1460 1540	=	_	175 175	6	1610 1700	=	216 228	_	_	_	_	9.5 9.5	_	1800 1900	=	330 348
/1400	1400	1520	_	-	95	3	1630	=	-	180	6	1790	=	220	_	_	-	_	12	-	2000	=	360
/1500	1500	1630	_	_	105	4	1750	-	_	195	6	1920	-	252	_	_	-	_	12	_	2140	-	384
/1600 /1700	1600 1700	1730 1840	_	-	105 112	4	1850 1970	=	_	195 212	6 7.5	2040 2160	-	264 276	_	_	-	_	15 15	-	2270	=	402
/1800	1800	1950	_	_	120	4	2080	_	_	220	7.5	2280	_	288	_	_	_	_	15	_	_		_
/1900 /2000	1900 2000	2060 2160		-	130 130	5 5	2180 2300	=	_	220 236	7.5 7.5	_	=	=	-	_	_	_	=	-	_	=	=
/2120	2120	2300	_	_	140	5	2430	_	_	243	7.5	_	_	_	_	_	_	_	_	_	_	_	
/2240 /2360	2240 2360	2430 2550	_	_	150 150	5 5	2570 2700	=	_	258 265	9.5 9.5	_	=	=	_	_	=	_	=	_	_	=	
/2500	2500	2700	-	-	160	5	2850	-	-	272	9.5	-	-	-	-	-	-	-	-	-	-	-	-

Remarks 1. Dimension Series 22, 23, and 24 are double-direction bearings.

2. The maximum permissible outside diameter of shaft and central washers and minimum permissible bore diameter of housing washers are omitted here (refer to the bearings tables for thrust bearings)

Side Cover

Stepped Bore

Diameter

(Reference)

 $D_{\rm X}$

min.

25.5

27.5

31.5

33.5

35.5

37.5

40.5

42.5

43.5

45.5

47.5

48.5

50.5

55.5

58.5

61.5

65.5

68.5

72

76

84

86

91

96

101

106

112

117

122

127

132

137

147

152

157

173

183

188

198

208

Geometry of Snap Ring Fitted in Groove (Reference)

Snap Ring

Outside

Diameter D

max

24.8

26.8

30.8

32.8

34.8

36.8

39.8

41 8

42.8

44 8

46.8

47.8

49.8

54.8

57.8

60.8

64.8

67.8

70.8

74.8

82.7

84.4

89.4

94.4

99.4

104.4

110.7

115.7

120.7

125.7

130.7

135.7

145.7

150.7

155.7

171.5

181.5

186.5

196.5

206.5

Slit

Width

g

approx.

2

2

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

7

7

7

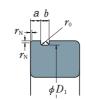
7

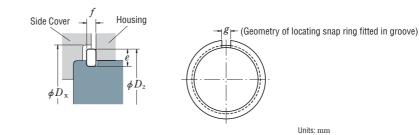
7

7

7

10


10


10

10

BOUNDARY DIMENSIONS AND BEARING DESIGNATIONS

Table 6. 4 Dimensions of Snap Ring Grooves and Locating Snap Rings — (1) Bearings of Dimension Series 18 and 19

Locating Snap Ring

max

0.7

0.7

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

1.12

1.12

1.12

1.12

1.12

1.12

1.12

1.12

1.12

1.12

1.12

1.12

1.7

1.7

1.7

1.7

1.7

1.7

1.7

17

Thickness

f

min

0.6

0.6

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

0.75

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.6

1.6

16

1.6

1.6

1.6

1.6

1.6

Cross Sectional

Height

e

min

1.85

1.85

1.9

1.9

1.9

1.9

1.9

1.9

1.9

1.9

1.9

1.9

1.9

1.9

1.9

1.9

1.9

1.9

1.9

1.9

3.1

3.1

3.1

3.1

3.1

3.1

3.89

3.89

3.89

3.89

3.89

3.89

3.89

3.89

3.89

4.7

4.7

4.7

4.7

4.7

max.

2.0

2.0

2.05

2.05

2.05

2.05

2.05

2.05

2.05

2.05

2.05

2.05

2.05

2.05

2.05

2.05

2.05

2.05

2.05

2.05

3.25

3.25

3.25

3.25

3.25

3.25

4.04

4.04

4.04

4.04

4.04

4.04

4.04

4.04

4.04

4.85

4.85

4.85

4.85

4.85

Locating Snap

Ring Number

NR 1022

NR 1024

NR 1028

NR 1030

NR 1032

NR 1034

NR 1037

NR 1039

NR 1040

NR 1042

NR 1044

NR 1045

NR 1047

NR 1052

NR 1055

NR 1058

NR 1062

NR 1065

NR 1068

NR 1072

NR 1078

NR 1080

NR 1085

NR 1090

NR 1095

NR 1100

NR 1105

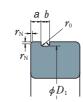
NR 1110

App	licable Bear	rings				Snap F	Ring Groove	1			
(d		Snap Rin Dian				а			g Groove dth	Radius of Bottom
		D	L),		Bearing Dim				Ь	Corners γ_0
	on Series			-		18		19	-		
	19		max.	min.	max.	min.	max.	min.	max.	min.	max.
	10 12 15	22 24 28	20.8 22.8 26.7	20.5 22.5 26.4			1.05 1.05 1.3	0.9 0.9 1.15	1.05 1.05 1.2	0.8 0.8 0.95	0.2 0.2 0.25
 20 22	17	30 32 34	28.7 30.7 32.7	28.4 30.4 32.4	 1.3 1.3	— 1.15 1.15	1.3 —	1.15 —	1.2 1.2 1.2	0.95 0.95 0.95	0.25 0.25 0.25
25 28	20 22 —	37 39 40	35.7 37.7 38.7	35.4 37.4 38.4	1.3 — 1.3	1.15 1.15	1.7 1.7 —	1.55 1.55 —	1.2 1.2 1.2	0.95 0.95 0.95	0.25 0.25 0.25
30 32 —	25 — 28	42 44 45	40.7 42.7 43.7	40.4 42.4 43.4	1.3 1.3 —	1.15 1.15 —	1.7 — 1.7	1.55 — 1.55	1.2 1.2 1.2	0.95 0.95 0.95	0.25 0.25 0.25
35 40 —	30 32 35	47 52 55	45.7 50.7 53.7	45.4 50.4 53.4	1.3 1.3 —	1.15 1.15 —	1.7 1.7 1.7	1.55 1.55 1.55	1.2 1.2 1.2	0.95 0.95 0.95	0.25 0.25 0.25
45 50	40	58 62 65	56.7 60.7 63.7	56.4 60.3 63.3	1.3 — 1.3	1.15 1.15	1.7 —	 1.55 	1.2 1.2 1.2	0.95 0.95 0.95	0.25 0.25 0.25
 55 60	45 50	68 72 78	66.7 70.7 76.2	66.3 70.3 75.8	— 1.7 1.7	 1.55 1.55	1.7 1.7 —	1.55 1.55 —	1.2 1.2 1.6	0.95 0.95 1.3	0.25 0.25 0.4
65 70	55 60 65	80 85 90	77.9 82.9 87.9	77.5 82.5 87.5	— 1.7 1.7	 1.55 1.55	2.1 2.1 2.1	1.9 1.9 1.9	1.6 1.6 1.6	1.3 1.3 1.3	0.4 0.4 0.4
75 80 —		95 100 105	92.9 97.9 102.6	92.5 97.5 102.1	1.7 1.7 —	1.55 1.55 —	 2.5 2.5	 2.3 2.3	1.6 1.6 1.6	1.3 1.3 1.3	0.4 0.4 0.4
85 90 95	80 — 85	110 115 120	107.6 112.6 117.6	107.1 112.1 117.1	2.1 2.1 2.1	1.9 1.9 1.9	2.5 — 3.3	2.3 3.1	1.6 1.6 1.6	1.3 1.3 1.3	0.4 0.4 0.4
100 105 110	90 95 100	125 130 140	122.6 127.6 137.6	122.1 127.1 137.1	2.1 2.1 2.5	1.9 1.9 2.3	3.3 3.3 3.3	3.1 3.1 3.1	1.6 1.6 2.2	1.3 1.3 1.9	0.4 0.4 0.6
120 130	105 110 120	145 150 165	142.6 147.6 161.8	142.1 147.1 161.3	 2.5 3.3	 2.3 3.1	3.3 3.3 3.7	3.1 3.1 3.5	2.2 2.2 2.2	1.9 1.9 1.9	0.6 0.6 0.6
140 150 160	130 140	175 180 190 200	171.8 176.8 186.8 196.8	171.3 176.3 186.3 196.3	3.3 — 3.3 3.3	3.1 — 3.1 3.1	3.7 3.7 	3.5 3.5	2.2 2.2 2.2 2.2 2.2	1.9 1.9 1.9 1.9	0.6 0.6 0.6 0.6

2.1	1.9		_	1.6	1.3	0.4	NR 1115	
2.1	1.9	3.3	3.1	1.6	1.3	0.4	NR 1120	
2.1	1.9	3.3	3.1	1.6	1.3	0.4	NR 1125	
2.1	1.9	3.3	3.1	1.6	1.3	0.4	NR 1130	
2.5	2.3	3.3	3.1	2.2	1.9	0.6	NR 1140	
_	_	3.3	3.1	2.2	1.9	0.6	NR 1145	
2.5	2.3	3.3	3.1	2.2	1.9	0.6	NR 1150	
3.3	3.1	3.7	3.5	2.2	1.9	0.6	NR 1165	
3.3	3.1	_	_	2.2	1.9	0.6	NR 1175	
		3.7	3.5	2.2	1.9	0.6	NR 1180	
3.3	3.1	3.7	3.5	2.2	1.9	0.6	NR 1190	
3.3	3.1	—	_	2.2	1.9	0.6	NR 1200	
			e side of the		gs are as fo	llows:		

Remarks The minimum permissible chamfer dimension Dimension series 18 : For outside diameters of 78 mm or less, use a 0.3 mm chamfer.

For all others exceeding 78 mm, use 0.5 mm chamfer.


Dimension series 19 : For outside diameters of 24 mm or less, use a 0.2 mm chamfer.

For 47mm or less, use a 0.3 mm chamfer.

For those exceeding 47 mm, use a 0.5 mm chamfer (However, for an outside diameter of

68 mm, use a 0.3 mm chamfer, though note this is not compliant with ISO 15).

Table 6. 4 Dimensions of Snap Ring Grooves and Locating Snap Rings — (2) Bearings of Diameter Series 0, 2, 3, and 4

Side Cover f Housing ϕD_x ϕD_2	(Geometry of locating snap ring fitted in groove)

	Appli	cable Bea	rings					Snap Ri	ng Groove				
	C	d				ng Groove meter			oove Positi Ə			g Groove dth	Radius of Bottom
	Diamoto	r Series		D	1	D_1		Dial	neter Serie 2, 3		- 1	6	Corners γ_0
0	2	3	4		max.	min.	max.	 min.	max.	min.	max.	min.	max.
10	-	0	_	26	24.5	24.25	1.35	1.19			1.17	0.87	0.2
12		_	_	28	26.5	26.25	1.35	1.19	_	_	1.17	0.87	0.2
15 17	10 12 15	9 	8 9	30 32 35	28.17 30.15 33.17	27.91 29.9 32.92	 2.06 2.06	1.9 1.9	2.06 2.06 2.06	1.9 1.9 1.9	1.65 1.65 1.65	1.35 1.35 1.35	0.4 0.4 0.4
 20	17	12 15	10 	37 40 42	34.77 38.1 39.75	34.52 37.85 39.5	2.06	 1.9	2.06 2.06 2.06	1.9 1.9 1.9	1.65 1.65 1.65	1.35 1.35 1.35	0.4 0.4 0.4
22 25	 20 22	17		44 47 50	41.75 44.6 47.6	41.5 44.35 47.35	2.06	1.9 1.9	2.46 2.46	2.31 2.31	1.65 1.65 1.65	1.35 1.35 1.35	0.4 0.4 0.4
28 30	25 	20 22	15 —	52 55 56	49.73 52.6 53.6	49.48 52.35 53.35	2.06 2.08	1.9 1.88 —	2.46 2.46	2.31 2.31	1.65 1.65 1.65	1.35 1.35 1.35	0.4 0.4 0.4
32 35 —	28 30 32	25 	17	58 62 65	55.6 59.61 62.6	55.35 59.11 62.1	2.08 2.08 —	1.88 1.88 —	2.46 3.28 3.28	2.31 3.07 3.07	1.65 2.2 2.2	1.35 1.9 1.9	0.4 0.6 0.6
40 	35 —	28 30 32	20	68 72 75	64.82 68.81 71.83	64.31 68.3 71.32	2.49 2.49	2.29 2.29	3.28 3.28 3.28	3.07 3.07 3.07	2.2 2.2 2.2	1.9 1.9 1.9	0.6 0.6 0.6
50 — 55	40 45 50	35 — 40	25 — 30	80 85 90	76.81 81.81 86.79	76.3 81.31 86.28	2.49 2.87	2.29 2.67	3.28 3.28 3.28	3.07 3.07 3.07	2.2 2.2 3	1.9 1.9 2.7	0.6 0.6 0.6
60 65 70	55 60	45 50	 35 40	95 100 110	91.82 96.8 106.81	91.31 96.29 106.3	2.87 2.87 2.87	2.67 2.67 2.67	 3.28 3.28	 3.07 3.07	3 3 3	2.7 2.7 2.7	0.6 0.6 0.6
75 — 80	65 70	55 —	45 —	115 120 125	111.81 115.21 120.22	111.3 114.71 119.71	2.87 2.87	2.67 2.67	 4.06 4.06	 3.86 3.86	3 3.4 3.4	2.7 3.1 3.1	0.6 0.6 0.6
85 90 95	75 80	60 65 —	50 55 —	130 140 145	125.22 135.23 140.23	124.71 134.72 139.73	2.87 3.71 3.71	2.67 3.45 3.45	4.06 4.9	3.86 4.65	3.4 3.4 3.4	3.1 3.1 3.1	0.6 0.6 0.6
100 105 110	85 90 95	70 75 80	60 65 —	150 160 170	145.24 155.22 163.65	144.73 154.71 163.14	3.71 3.71 3.71	3.45 3.45 3.45	4.9 4.9 5.69	4.65 4.65 5.44	3.4 3.4 3.8	3.1 3.1 3.5	0.6 0.6 0.6
120 130	100 105 110	85 90 95	70 75 80	180 190 200	173.66 183.64 193.65	173.15 183.13 193.14	3.71 5.69	3.45 5.44	5.69 5.69 5.69	5.44 5.44 5.44	3.8 3.8 3.8	3.5 3.5 3.5	0.6 0.6 0.6

de Cover f Housing e^{p} ϕD_x ϕD_2	Geometry of locating snap ring fitted in
	Unite: mm

U	Ini	ts:	mm	

		Side Cover					
Locating Snap Ring Number	He	Sectional ight e	Thio	ckness f	Fitte	y of Snap Ring d in Groove eference) Snap Ring Outside Diameter D ₂	Stepped Bore Diameter (Reference) D _X
	max.	min.	max.	min.	approx.	max.	min.
NR 26 (1)	2.06	1.91	0.84	0.74	3	28.7	29.4
NR 28 (1)	2.06	1.91	0.84	0.74	3	30.7	31.4
NR 30	3.25	3.1	1.12	1.02	3	34.7	35.5
NR 32	3.25	3.1	1.12	1.02	3	36.7	37.5
NR 35	3.25	3.1	1.12	1.02	3	39.7	40.5
NR 37 NR 40 NR 42	3.25 3.1 3.25 3.1 3.25 3.1 3.25 3.1 4.04 3.89		1.12 1.12 1.12	1.02 1.02 1.02	3 3 3	41.3 44.6 46.3	42 45.5 47
NR 44 NR 47 NR 50			1.12 1.12 1.12	1.02 1.02 1.02	3 4 4	48.3 52.7 55.7	49 53.5 56.5
NR 52	4.04	3.89	1.12	1.02	4	57.9	58.5
NR 55	4.04	3.89	1.12	1.02	4	60.7	61.5
NR 56	4.04	3.89	1.12	1.02	4	61.7	62.5
NR 58			1.12	1.02	4	63.7	64.5
NR 62			1.7	1.6	4	67.7	68.5
NR 65			1.7	1.6	4	70.7	71.5
NR 68	4.85	4.7	1.7	1.6	5	74.6	76
NR 72	4.85	4.7	1.7	1.6	5	78.6	80
NR 75	4.85	4.7	1.7	1.6	5	81.6	83
NR 80	4.85	4.7	1.7	1.6	5	86.6	88
NR 85	4.85	4.7	1.7	1.6	5	91.6	93
NR 90	4.85	4.7	2.46	2.36	5	96.5	98
NR 95	4.85	4.7	2.46	2.36	5	101.6	103
NR 100	4.85	4.7	2.46	2.36	5	106.5	108
NR 110	4.85	4.7	2.46	2.36	5	116.6	118
NR 115	4.85	4.7	2.46	2.36	5	121.6	123
NR 120	7.21	7.06	2.82	2.72	7	129.7	131.5
NR 125	7.21	7.06	2.82	2.72	7	134.7	136.5
NR 130	7.21	7.06	2.82	2.72	7	139.7	141.5
NR 140	7.21	7.06	2.82	2.72	7	149.7	152
NR 145	7.21	7.06	2.82	2.72	7	154.7	157
NR 150	60 7.21 7.06		2.82	2.72	7	159.7	162
NR 160			2.82	2.72	7	169.7	172
NR 170			3.1	3	10	182.9	185
NR 180	9.6	9.45	3.1	3	10	192.9	195
NR 190	9.6	9.45	3.1	3	10	202.9	205
NR 200	9.6	9.45	3.1	3	10	212.9	215

 Note
 (1)
 The locating snap rings and snap ring grooves of these bearings are not specified by ISO.

 Remarks
 1. The dimensions of these snap ring grooves are not applicable to bearings of Dimension Series 00, 82, and 83.

 2. The minimum permissible chamfer dimension r_N on the snap-ring side of outer rings is 0.5 mm. However, for

Diameter Series 0 bearings with outside diameters of 35 mm or below, it is 0.3 mm.

6.2 Formulation of Bearing Designations Table 6. 5 Bearing Series Designations (Example 4) NU 3 18 M CM Bearing designations (or "bearing numbers") are Radial Clearance for Dimensions Dimensions codes containing alphanumeric and non-alphanumeric Electric-Motor Bearings CM characters that indicate bearing type, boundary Machined Brass Cage Bearing Bearing dimensions, dimensional and running accuracies. Bearing Type Туре Bearing Type Туре Width Nominal Bore Diameter 90 mm Series Series internal clearance, and other related specifications. Width Diameter Diameter or The boundary dimensions of commonly used bearings Diameter Series 3 Height mostly conform to the organizational concept of ISO. -NU Type Cylindrical and the bearing numbers of these standard bearings Roller Bearing Double-Row are specified by IIS B 1513 (Rolling bearings-68 6 (1) 8 **NNU49** NNU 4 9 Cylindrical Designation). Due to a need for more detailed Single-Row 69 9 6 (1) (Example 5) NN 3 0 17 K CC1 P4 0 NN30 NN 3 classification. NSK uses auxiliary designations other Roller Bearings 60 0 Deep Groove 6 (1) than those specified by IIS. Accuracy of ISO Class 4 62 2 Ball Bearings 6 (0) Bearing designations consist of a basic designation -Radial Clearance in Non-**NA48** NA 4 8 63 6 (0) 3 and supplementary designation. The basic designation Interchangeable Cylindrical Needle Roller **NA49** NA 9 Roller Bearings CC1 indicates the bearing series (type) and the width Bearings **NA59** NA 5 9 79 7 9 (1) Tapered Bore (Taper 1:12 and diameter series as shown in Table 6.5. Basic Single-Row NA69 NA 9 70 7 (1) 0 6 designations, supplementary designations, and the Angular Contact Nominal Bore Diameter 85 mm 72 7 (0) 2 meanings of common numbers and designations are **Ball Bearings** Diameter Series 0 listed in Table 6.6 (Pages A122 and A123). Contact 7 3 73 (0) 3 9 329 2 Width Series 3 angle and other supplementary designations are 3 0 320 2 12 (0) 2 1 shown in successive columns from left to right in Table -NN Type Cylindrical Roller Bearing 330 3 0 3 6.6. For reference, some example designations are Self-Aligning 13 3 1 (0) 331 3 3 1 shown here: **Ball Bearings** 22 2 (1) 2 (Example 6) HR 3 0 2 07 J Tapered Roller 302 3 0 2 3 23 (1) 2 Small Diameter of Outer Ring Bearings 3 2 322 2 **Raceway and Contact Angle** NU10 NU 0 2 Conform to ISO 332 3 3 NU2 NU (0) 2 (Example 1) 6 3 0 8 ZZ C3 Nominal Bore Diameter 35 mm **NU22** NU 2 2 Radial Clearance C3 303 3 3 0 Diameter Series 2 (Internal Clearance Designation) 3 NU3 NU (0) 3 323 3 2 Width Series 0 Shields on Both Sides **NU23** NU 2 3 (Shield Designation) Tapered Roller Bearing NU4 NU (0) 4 230 2 3 0 -Nominal Bore Diameter 40 mm High Capacity Bearing 231 2 3 1 (Bore Number) NJ2 NJ (0) 2 Spherical 2 222 2 2 Diameter Series 3 NJ22 NJ 2 2 Bearing Roller (Example 7) 2 4 0 / 1000 CA M K30 E4 C3 -Single-Row Deep Series NJ3 NJ (0) 3 232 2 3 2 Bearings Groove Ball Bearing Designation -Radial Clearance C3 NJ23 NJ 3 2 213 (1 2 3 Outer Ring with Oil (Example 2)7 2 20 A DB C3 NJ Single-Row NJ4 (0) 4 223 2 2 3 Groove and Oil Holes -Axial Clearance C3 Cylindrical Tapered Bore NUP2 NUP (0) 2 Roller Back-to-Back Arrangement (Taper 1:30) 511 5 1 2 NUP22 NUP 2 -Machined Brass Cage Bearings 5 2 512 NUP3 NUP (0) 3 -Contact Angle 30° -Spherical Roller Bearing 5 3 513 NUP23 NUP 2 3 Thrust Ball -Nominal Bore Diameter 100 mm -Nominal Bore Diameter **1 000 mm** 514 5 4 NUP4 NUP (0) 4 Bearings with -Diameter Series 2 Diameter Series 0 Flat Seats 2 0 522 5 N10 Ν Single-Row Angular Contact Ball Width Series 4 Bearing 523 5 3 N2 Ν (0) 2 2 -Spherical Roller Bearing (Example 3)1 2 0 6 K +H206X N3 Ν 3 524 5 4 (0)2 N4 Ν (0) 4 (Example 8)5 1 2 15 -Adapter with **25 mm** Bore 292 2 Spherical 2 9 -Tapered Bore (Taper 1:12) -Nominal Bore Diameter **75 mm** NF2 NF 2 (0) Thrust Roller 293 2 3 9 Nominal Bore Diameter 30 mm NF3 NF (0)3 Diameter Series 2 Bearings 294 2 9 4 NF4 NF (0) 4 -Diameter Series 2 -Heiaht Series 1 -Self-Aligning Ball Bearing Bearing Series 213 should logically be 203, but customarily it is numbered 213. Note (1) -Thrust Ball Bearing Remark

Numbers in parentheses () in the width column are usually omitted from the bearing designation.

Best Single-Row Bearings 1 Bearings (a) 1 I I I I I I I I I I I I I I <th></th> <th colspan="6">Basic Designation</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		Basic Designation												
Series (1) Exercise of the end of th	В	earing	Bore	Number	Cor	ntact Angle	In	ternal Design		Material		Cage	Exter	nal Features
Big Single-Roy Groupe Big 1 Bigs Immediate Angle of Soft Angle Single-Roy E A guiar Contact Rail Bearings A standard Contact Angle of Soft Angle Standard A standard Contact Angle of Soft Angle of	Se	eries (1)		, NUTIDEI	001	naor Angle		ternar Design		material		Uaye	Seal	s, Shields
00 Rev Tesp 1 Dem Tomat Bail 2 2 Contact Bail Baarsy Cage 2 2 Subdate 00 Bearings 3 3 A Standard Smaller Dameter of Outer Fing Fings, Follon Baarsy Cage ZS Subdate 70 Single-Row III IIII Smaller Dameter of Outer Fing Smaller Dameter of Outer Fing Fings, Follon W Pressed- 72 Contact Bail 9 9 AS Standard Smaller Dameter of Outer Fing Fings, Follon W Pressed- 72 Single-Row IIII IIII B Standard Gontact Angle Fings, Follon W Pressed- 72 Single-Row 3 T Earlings (Conforms) N Side Earlings ZZ Side Earlings 73 Single-Row 72 Contact Angle Office Front Fings, Follon N W Pressed- 74 Didre-Row 73 Standard Contact Angle CA 73 Side Barings 72 Side Barings Follor Follor Soberical Roller	Code	Meaning	Code	Meaning	Code	Meaning	Code	Meaning	Code	Meaning	Code	Meaning	Code	Meaning
320 322 Bearings Tapered Roller Bearings 06 30 30 Omitted Contact Angle Less Than 17° EA 322 323 (*) * <td>69 60 : 70 72 13 22 : NU10 NJ 2 NN 30 : NA48 NA49 NA69</td> <td>Row Deep Groove Ball Bearings Single-Row Angular Contact Ball Bearings Self- Aligning Ball Bearings Cylindrical Roller Needle Roller</td> <td>2 3 9 00 01 02 03 /22 /28 /32 04(3)</td> <td>2 3 9 10 12 15 17 22 28 32 20</td> <td>A A A5 C</td> <td>oritact Ball earings Standard Contact Angle of 30° Standard Contact Angle of 25° Standard Contact Angle of 40° Standard Contact Angle of 40°</td> <td>J (F B C CA</td> <td>Differs From Standard Smaller Diameter of Outer Ring Raceway, Contact Angle, and Outer Ring Width of Tapered Roller Bearings (Conforms to ISO 355) or High Capacity earings</td> <td></td> <td>Steel Used in Rings, Rolling Elements Stainless Steel Used in Rings,</td> <td>w</td> <td>Brass Cage Pressed- Steel Cage Synthetic Resin Cage Without</td> <td>ZS ZZ ZZS DU DDU</td> <td><pre>} on One Side Only } Shields on Both Sides Pubber Contact Seal on One Side Only Rubber Contact Seals on Both Sides Rubber Non-</pre></td>	69 60 : 70 72 13 22 : NU10 NJ 2 NN 30 : NA48 NA49 NA69	Row Deep Groove Ball Bearings Single-Row Angular Contact Ball Bearings Self- Aligning Ball Bearings Cylindrical Roller Needle Roller	2 3 9 00 01 02 03 /22 /28 /32 04(3)	2 3 9 10 12 15 17 22 28 32 20	A A A5 C	oritact Ball earings Standard Contact Angle of 30° Standard Contact Angle of 25° Standard Contact Angle of 40° Standard Contact Angle of 40°	J (F B C CA	Differs From Standard Smaller Diameter of Outer Ring Raceway, Contact Angle, and Outer Ring Width of Tapered Roller Bearings (Conforms to ISO 355) or High Capacity earings		Steel Used in Rings, Rolling Elements Stainless Steel Used in Rings,	w	Brass Cage Pressed- Steel Cage Synthetic Resin Cage Without	ZS ZZ ZZS DU DDU	<pre>} on One Side Only } Shields on Both Sides Pubber Contact Seal on One Side Only Rubber Contact Seals on Both Sides Rubber Non-</pre>
512 Weith Flat Seats /560 560 Angular Contact Ball Bearings 513 Seats ::<	320 322 323 : 230 222 223	Roller Bearings (²) Spherical Roller	88 92 96	440 460 480	с	Less Than 17° Approx. 20° Contact Angle Approx. 28°	E	Cylindrical Roller Bearings Spherical Thrust					vv	on One Side Only Rubber Non- Contact Seals on
Tapered Roller Bearings and Others NSK Designations Designations and Numbers Conform to JIS(5) NSK Designations	511 512 513 : 292 293	Bearing With Flat Seats Thrust Spherical Roller	/560 /2 360	560 2 360			EA Angular Contact							
		Tapered Rolle Bearings and	r Others	lumbers Col	nform t	0 JIS(5)			NSK De	esignations			NSK	Designations
Marked on Bearings on Bearings						Marked on Rea	rings			-				-

Table 6. 6 Formulation of

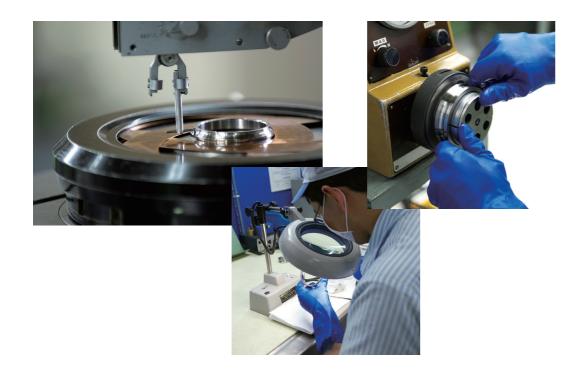
Bearing Designations

					_								[
Exterr	al Features	Arrai	ngement	Ir	nterr	nal Clearance / Preload	Toler	ance Class		Special ecification	Spac	er / Sleeve		Grease
Desig	n of Rings					TTCIDau				Semeation				
Code	Meaning	Code	Meaning	Code	Mea	aning (radial clearance)	Code	Meaning	Code	Meaning	Code	Meaning	Code	Meaning
К	Tapered Bore of Inner Ring (Taper 1:12)	DB	Back-to-Back Arrangement	C1 C2	Brgs.	Clearance Less Than C2 Clearance Less Than CN	Omitted	ISO Normal	Tre Di	arings eated with mensional	+K	Bearings With Outer Ring Spacers	AS2	SHELL ALVANIA GREASE S2
	(10001112)	DF	Face-to- Face	Omitted		CN Clearance Clearance Greater	P6	ISO Class 6		abilization	+L	Bearings With Inner	ENS	ENS GREAS
K30	Tapered Bore of		Arrangement	C3 C4	For All F	Than CN Clearance Greater Than C3	P6X	ISO Class 6X	X26	Working Temperature Lower Than 150 °C		Ring Spacers	NS7	NS HI-LUBE
	Inner Ring (Taper 1:30)	DT	Tandem Arrangement	C5		Clearance Greater Than C4	P5	ISO Class 5	X28	Working	+KL	Bearings With Both Inner and	PS2	MULTEMP P
Е	Notch or	h or icating	CC1	ngeable r Brgs.	Clearance Less Than CC2 Clearance Less	P4	ISO Class 4		Temperature Lower Than 200 °C		Outer Ring Spacers		No. 2	
E4	Lubricating Groove in Ring			CC	terchang Roller B	Than CC Normal Clearance	14		X29	Working Temperature Lower Than	н	Adapter		
				CC3 CC4	Non-Intellind	Clearance Greater Than CC Clearance Greater	P2	ISO Class 2	-	250 °C	AH	Withdrawal Sleeve		
	Lubricating Groove in Outside			CC5	δ	Than CC3 Clearance Greater Than CC4	Тар	VIA(7) ered ler Bearing		Spherical	HJ	Thrust Collar		
	Surface and Holes in Outer Ring			MC1	rgs.	Clearance Less Than MC2 Clearance Less Than		Class 4		Roller Bearings Dimensional		Gollar		
N	Snap Ring Groove in			MC2 MC3	Small Ball B	MC3 Normal Clearance	PN2	Class 2	311	Stabilizing Treatment Working				
	Outer Ring				For Extra- Miniature	Clearance Greater Than MC3 Clearance Greater				Temperature Lower Than 200 °C				
NR	Snap Ring Groove With Snap Ring			MC5 MC6	and N	Than MC4 Clearance Greater Than MC5	PN3	Class 3						
	in Outer Ring			СМ	Clea Ball Mot	rance in Deep Groove Bearings for Electric	PN0	Class 0						
				СТ СМ	Clea	rance in Cylindrical er Bearings for Electric	PN00	Class 00						
					Preloa Ball Be	d of Angular Contact) aring								
		EL Extra Light Preload L Light Preload M Medium Preload		nt Preload										
	ially Match JIS(5)		/atch IIS(₅)	H N: Desigr	SK	Partially Match JIS(5)/ BAS(6)	M	atch JIS(5)		NSK Des	ignation	ns, Partially Ma	tch IIS(5)

 Notes
 (1) Bearing Series designations conform to Table 6.5.

 (2) For basic designations of tapered roller bearings in ISO's new series, refer to Page C182.

 (3) The bore size (mm) is five times the bore number for Bore Numbers 04 through 96 (except double-direction thrust


(4) HR is an NSK Bearing Series designation.

Notes

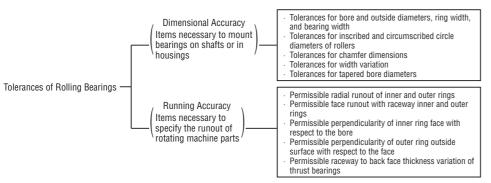
(5) JIS: Japanese Industrial Standards.
 (6) BAS: The Japan Bearing Industrial Association Standard.
 (7) ABMA: The American Bearing Manufacturers Association.

7. BEARING TOLERANCES

- 7.1 Bearing Tolerance Standards A 126
- 7.2 Selection of Tolerance Classes A 151

7. BEARING TOLERANCES

Class 2 is the highest bearing tolerance class in ISO but additional classes exist, including Class 6X (for

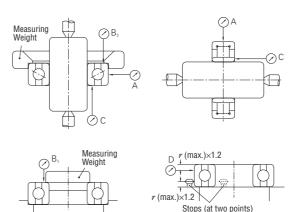

tapered roller bearings), Class 6, Class 5, and Class

4. The applicable tolerance classes for each bearing

type and the correspondence of these classes are

7.1 Bearing Tolerance Standards

The tolerances for the boundary dimensions and running accuracy of rolling bearings are specified by ISO 492, 199, and 582. Tolerances are specified for the following items:



shown in Table 7.1.

Table 7. 1 Bearing Types and Tolerance Classes

De	ep Groove I	Ball Bearing				Normal		Class 6	Class 5	Class 4	Class 2
An	gular Conta	ict Ball Bearings				Normal	_	Class 6	Class 5	Class 4	Class 2
Se	lf-Aligning I	Ball Bearings			ISO 492	Normal		Class 6 Equivalent	Class 5 Equivalent		_
Су	lindrical Ro	ller Bearings				Normal	—	Class 6	Class 5	Class 4	Class 2
Ne	edle Roller	Bearings				Normal	—	Class 6	Class 5	Class 4	
Sp	herical Roll	er Bearings				Normal		Class 6	Class 5	_	—
		Metr	ic Design		ISO 492	Normal	Class 6X	Class 6	Class 5	Class 4	—
Ro	bered ller	Incl	h Design		ANSI/ AFBMA Std.19.2	Class 4	_	Class 2	Class 3	Class 0	Class 00
Be	arings	J	Series		ANSI/ AFBMA Std.19.1	Class K	Class N		Class C	Class B	_
Ма	gneto Ball I	Bearings			BAS1061	Normal Equivalent	_	Class 6 Equivalent	Class 5 Equivalent	_	_
Th	rust Ball Be	arings				Normal		Class 6	Class 5	Class 4	_
Th	rust Roller I	Bearings			ISO 199	Normal	_	_	—		
Th	rust Spheri	cal Roller Bearin	gs			Normal			—		
	IIS				JIS B 1514, 1536	Class 0	_	Class 6	Class 5	Class 4	Class 2
ence)		Tapered Roller Bearings	Metric Desig	n	JIS B 1514	Class 0	Class 6X	(Class 6)	Class 5	Class 4	_
efere	DIN				DIN620	P0		P6	P5	P4	P2
s (B		Ball	Bearings		ANSI/ AFBMA	ABEC1	—	ABEC3	ABEC5	ABEC7	ABEC9
lard		Rolle	r Bearings		Std.20	RBEC1	_	RBEC3	RBEC5	_	_
Equivalent Standards (Reference)	ANSI/ AFBMA	Instrumer	nt Ball Bearing		ANSI/ AFBMA Std.12.2	_	_		Class 5P	Class 7P	Class 9P
Equival		Tapered Roller Bearings	Metric Desig	n	ANSI/ AFBMA Std.19.1	Class K	Class N	_	Class C	Class B	Class A
	BAS	Tapered Roller Bearings	Metric Mul Design Fou	ti/ r-Row	BAS1002	Class 0	_		_		_

(Reference) Rough definitions of items related to running accuracy and their measuring methods are shown in Fig. 7.1. These are further described in detail in ISO 5593 (*Rolling Bearings-Vocabulary*), JIS B 1515, (*Rolling Bearings-Tolerances*) and elsewhere.

Supplementary Table

or pp or or o	, , , , , , , , , , , , , , , , , , , ,		
Running Accuracy	Inner Ring	Outer Ring	Dial Gauge
K _{ia}	Rotating	Stationary	А
K _{ea}	Stationary	Rotating	А
S _{ia}	Rotating	Stationary	B ₁
$S_{\rm ea}$	Stationary	Rotating	B_2
S_d	Rotating	Stationary	С
S_D	_	Rotating	D
S_i , $S_{ m e}$	Only the shaft, or central wash rotated.		E

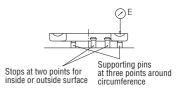
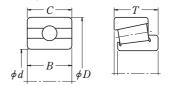



Fig. 7.1 Measuring Methods for Running Accuracy (Summarized)

Symbols for Boundary Dimensions and Running Accuracy

- *d* Nominal bore diameter
- Δ_{ds} Deviation of a single bore diameter
- Δ_{dmp} Single plane mean bore diameter deviation
- V_{dp} Bore diameter variation in a single radial plane
- V_{dmn} Mean bore diameter variation
- V_{dsp}^{amp} Variation of bore diameter in a single plane
- *B* Inner ring width, nominal
- Δ_{Bs} Deviation of a single inner ring width
- V_{Bs} Inner ring width variation
- K_{ia} Radial runout of assembled brg. inner ring S_d Perpendicularity of inner ring face with
- respect to the bore Sia Axial runout of inner ring of assembled
- bearing
- $S_{\rm i}, S_{\rm e}$ Parallelism of inner ring raceway with respect to the face
- T Nominal (assembled) bearing width
- $\Delta_{T_{\rm S}}$ Deviation of the actual brg. width
- Δ_{TIs} Deviation of the actual effective width of inner subunit
- Δ_{T2s} Deviation of the actual effective width of outer ring

- *D* Nominal outside diameter
- Δ_{Ds} Deviation of a single outside diameter
- $\varDelta_{\mathcal{D}mp}$ Single plane mean outside diameter deviation
- V_{Dp} Outside diameter variation in a single radial plane
- V_{Dmp} Mean outside diameter variation
- $V_{D \mathrm{sp}}^{\mathrm{smp}}$ Variation of outside diameter in a single plane
- *C* Nominal outer ring width
- Δ_{Cs} Deviation of a single outer ring width
- *V_{Cs}* Outer ring width variation
- *K*_{ea} Radial runout of assembled brg. outer ring
- S_D Perpendicularity of outer ring outside
- surface with respect to the face
- $S_{ea} \quad \mbox{Axial runout of outer ring of assembled} \\ \mbox{bearing} \quad \mbox{bearing}$

Table 7. 2	Tolerances for Radial Bearings	
Table 7. 2	. 1 Tolerances for Inner Rings and	

Nominal Bore	Nominal Bore Diameter					\varDelta_{dm}	_{.p} (2)						Δ	_{ds} (2)	
<i>d</i> (mm))	Norm	al Class	Cla	ss 6	Cla	ss 5	Cla	ss 4	Cla	ass 2	<u> </u>	ss 4 er Series		ass 2 er Series
												0, 1, 2	2, 3, 4	0, 1,	2, 3, 4
over	incl.	high	low	high	low	high	low	high	low	high	low	high	low	high	low
0.6(1) 2.5 10	2.5 10 18	0 0 0	- 8 - 8 - 8	0 0 0	- 7 - 7 - 7	0 0 0	- 5 - 5 - 5	0 0 0	- 4 - 4 - 4	0 0 0	-2.5 -2.5 -2.5	0 0 0	- 4 - 4 - 4	0 0 0	-2.5 -2.5 -2.5
18 30 50	30 50 80	0 0 0	- 10 - 12 - 15	0 0 0	- 8 -10 -12	0 0 0	- 6 - 8 - 9	0 0 0	- 5 - 6 - 7	0 0 0	-2.5 -2.5 -4	0 0 0	- 5 - 6 - 7	0 0 0	-2.5 -2.5 -4
80 120 150 180	120 150 180 250	0 0 0 0	- 20 - 25 - 25 - 30	0 0 0 0	-15 -18 -18 -22	0 0 0 0	-10 -13 -13 -15	0 0 0	- 8 -10 -10 -12	0 0 0 0	-5 -7 -7 -8	0 0 0 0	- 8 -10 -10 -12	0 0 0	-5 -7 -7 -8
250 315 400	315 400 500	0 0 0	- 35 - 40 - 45	0 0 0	-25 -30 -35	0 0	-18 -23 								
500 630 800	630 800 1 000	0 0 0	- 50 - 75 -100	0	-40 		_								
1 000 1 250 1 600	1 250 1 600 2 000	0 0 0	-125 -160 -200		_		_								

						4	Δ_{Bs} (or	Δ_{cs}	(3)								$V_{\scriptscriptstyle Bs}$	(or V_{cs})	
		5	Single B	earin	g					Co	ombine	l Bea	rings			Inner R Outer R	ing (or ing) (³)	Ir	nner Rir	ng
	ormal Class	Cl	ass 6	Cl	ass 5		ass 4 ass 2	No	lass ormal)())		ass 6)(⁵)		ass 5 ¹) (⁵)		ss 4 (4) ss 2 (4)	Normal Class		Class 5	Class 4	Clas 2
high	low	high	low	high	low	high	low	high	low	high	low	high	low	high	low	Max.	Max.	Max.	Max.	Max
0 0 0	- 40 - 120 - 120	0 0 0	- 40 -120 -120	0 0 0	- 40 - 40 - 80	0 0 0	- 40 - 40 - 80	 0 0	-250 -250	0 0	-250 -250	0 0 0	-250 -250 -250	0 0 0	-250 -250 -250	12 15 20	12 15 20	5 5 5	2.5 2.5 2.5	1.5 1.5 1.5
0 0 0	- 120 - 120 - 150	0 0 0	-120 -120 -150	0 0 0	-120 -120 -150	0 0 0	-120 -120 -150	0 0 0	-250 -250 -380	0 0 0	-250 -250 -380	0 0 0	-250 -250 -250	0 0 0	-250 -250 -250	20 20 25	20 20 25	5 5 6	2.5 3 4	1.5 1.5 1.5
0 0 0 0	- 200 - 250 - 250 - 300	0 0 0	-200 -250 -250 -300	0 0 0 0	-200 -250 -250 -300	0 0 0 0	-200 -250 -250 -300	0 0 0 0	-380 -500 -500 -500	0 0 0 0	-380 -500 -500 -500	0 0 0 0	-380 -380 -380 -500	0 0 0 0	-380 -380 -380 -500	25 30 30 30	25 30 30 30	7 8 8 10	4 5 5 6	2.5 2.5 4 5
0 0 0	- 350 - 400 - 450	0 0 0	-350 -400 -450	0	-350 -400 		_	0	-500 -630	0	-500 -630	0	-500 -630			35 40 50	35 40 45	13 15 —		
0 0 0	- 500 - 750 -1 000	0 	-500				_						_			60 70 80	50 —			
Õ	-1 250 -1 600 -2 000	_	_		_		_		_		_		_		_	100 120 140		-		_

Notes (1) 0.6mm is included in this group.
(2) Applicable to bearings with cylindrical bores.
(3) Outer ring width tolerances or deviation depend on the values for the inner ring of the same bearing. Tolerances for the width variation of outer rings in Class 5, 4, and 2 are shown in Table 7.2.2.
(4) Applicable to individual rings manufactured for combined bearings.
(5) Also applicable to inner ring tapered bores with *d* ≥ 50 mm.
(6) Applicable to be bearings and the provider of the bearing of the provider the bearing of the provider to the bearing of the provider of the provi

(6) Applicable to ball bearings such as deep groove ball bearings and angular contact ball bearings.

(Excluding Tapered Roller Bearings)

Widths of Outer Rings

					$V_{_{dsp}}(^{2})$)							V_{dmp} (²)		
No	rmal Cl	ass		Class 6		Cla	ss 5	Cla	iss 4	Class 2						
Diar	neter Se	eries	Dia	meter Se	eries	Diamete	er Series	Diamete	er Series	Diameter Series	Normal Class	Class 6	Class 5	Class 4	Class 2	
9	0, 1	2, 3, 4	9	0, 1	2, 3, 4	9	9 1, 2, 3, 4		1, 2, 3, 4	0, 1, 2, 3, 4		-				
	Max.			Max.		M	ax.	M	ax.	Max.	Max.	Max.	Max.	Max.	Max.	
10 10 10	8 8 8	6 6 6	9 9 9	7 7 7	5 5 5	5 5 5	4 4 4	4 4 4	333	2.5 2.5 2.5	6 6 6	5 5 5	3 3 3	2 2 2	1.5 1.5 1.5	
13 15 19	10 12 19	8 9 11	10 13 15	8 10 15	6 8 9	6 8 9	5 6 7	5 6 7	4 5 5	2.5 2.5 4	8 9 11	6 8 9	3 4 5	2.5 3 3.5	1.5 1.5 2	
25 31 31 38	25 31 31 38	15 19 19 23	19 23 23 28	19 23 23 28	11 14 14 17	10 13 13 15	8 10 10 12	8 10 10 12	6 8 8 9	5 7 7 8	15 19 19 23	11 14 14 17	5 7 7 8	4 5 5 6	2.5 3.5 3.5 4	
44 50 56	44 50 56	26 30 34	31 38 44	31 38 44	19 23 26	18 23 —	14 18 —				26 30 34	19 23 26	9 12 —			
63	63	38	50	50	30	—	-	-	-	—	38	30	_	—	—	
_	_	_	_	_		_	_			_	_	_		_		
_	—	-	—	—	_	_	-	_	-	—	—	—	_	—		
_	_		_				_			_	_	_		_	_	

Units : µm

_			K _{ia}				S _d			S _{ia} (⁶)		Nominal Bore	Diameter
_	Normal Class	Class 6	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	<i>d</i> (mm)	
_	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	over	incl.
	10 10 10	5 6 7	4 4 4	2.5 2.5 2.5	1.5 1.5 1.5	7 7 7	3 3 3	1.5 1.5 1.5	7 7 7	3 3 3	1.5 1.5 1.5	0.6 2.5 10	2.5 10 18
	13 15 20	8 10 10	4 5 5	3 4 4	2.5 2.5 2.5	8 8 8	4 4 5	1.5 1.5 1.5	8 8 8	4 4 5	2.5 2.5 2.5	18 30 50	30 50 80
	25 30 30 40	13 18 18 20	6 8 8 10	5 6 6 8	2.5 2.5 5 5	9 10 10 11	5 6 7	2.5 2.5 4 5	9 10 10 13	5 7 7 8	2.5 2.5 5 5	80 120 150 180	120 150 180 250
	50 60 65	25 30 35	13 15 —			13 15 —			15 20 —			250 315 400	315 400 500
	70 80 90	40 										500 630 800	630 800 1 000
	100 120 140											1 000 1 250 1 600	1 250 1 600 2 000

Remarks 1. The cylindrical bore diameter "no-go side" tolerance limit (high) specified in this table does not necessarily apply within a distance from the ring face to 1.2 times the chamfer dimension r (max.).

2. AISI/ABMA Std 20-1996: ABEC1-RBEC1, ABEC3-RBEC3, ABEC5-RBEC5, ABEC7-RBEC7, and ABEC9 RBEC9 are equivalent to Classes Normal, 6, 5, 4, and 2 respectively.

Table 7. 2 Tolerances for Radial Bearings

Table 7. 2. 2 Tolerances

Nominal Ou					Δ	Dmp						2	1_{Ds}		
Diamete D		Name	nal Class	Cl		CI	5	CL	4		lass 2	Cla	ass 4	С	lass 2
(mm)		Norn	ial Class	Ci	ass 6		ass 5	Cla	ass 4		lass 2		Diamet	er Serie	es estatut
													0, 1,	2, 3, 4	
over	incl.	high	low	high	low	high	low	high	low	high	low	high	low	high	low
2.5(¹) 6 18	6 18 30	0 0 0	- 8 - 8 - 9	0 0 0	- 7 - 7 - 8	0 0 0	- 5 - 5 - 6	0 0 0	- 4 - 4 - 5	0 0 0	- 2.5 - 2.5 - 4	0 0 0	- 4 - 4 - 5	0 0 0	- 2.5 - 2.5 - 4
30 50 80	50 80 120	0 0 0	- 11 - 13 - 15	0 0 0	- 9 -11 -13	0 0 0	- 7 - 9 -10	0 0 0	- 6 - 7 - 8	0 0 0	- 4 - 4 - 5	0 0 0	- 6 - 7 - 8	0 0 0	- 4 - 4 - 5
120 150 180	150 180 250	0 0 0	- 18 - 25 - 30	0 0 0	-15 -18 -20	0 0 0	-11 -13 -13	0 0 0	- 9 -10 -11	0 0 0	- 5 - 7 - 8	0 0 0	- 9 -10 -11	0 0 0	- 5 - 7 - 8
250 315 400	315 400 500	0 0 0	- 35 - 40 - 45	0 0 0	-25 -28 -33	0 0 0	-18 -20 -23	0 0 —	-13 -15 —	0 0	- 8 -10	0 0	-13 -15 —	0 0	- 8 -10
500 630 800	630 800 1 000	0 0 0	- 50 - 75 -100	0 0 0	-38 -45 -60	0 0	-28 -35 —								
1 000 1 250	1 250 1 600	0	-125 -160	_	_		_		_	_	_		_	_	_
1 600 2 000	2 000 2 500	0	-200 -250	_	_		_		_		_		_		_

Notes (1) 2.5 mm is included in this group.

- Notes (1) 2.5 mm is included in this group.
 (2) Applicable only when a locating snap ring is not used.
 (3) Applicable to ball bearings, such as deep groove ball bearings and angular contact ball bearings.
 (4) Not applicable to bearings with flanges.
 (5) The tolerances for outer ring width variation in Normal Class and Class 6 bearings are shown in Table 7.2.1.
 Remarks 1. The outside diameter "no-go side" tolerances (low) specified in this table do not necessarily apply within a distance from the ring face to 1.2 times the chamfer dimension r (max.).
 2. AISI/ABMA Std 20-1996: ABEC1-RBEC1, ABEC3-RBEC3, ABEC5-RBEC5, ABEC7-RBEC7, and ABEC9-RBEC9 are equivalent to Classes Normal, 6, 5, 4, and 2 respectively.

(Excluding Tap	ered Roller	Bearings)
----------------	-------------	-----------

for Outer Rings

								$V_{\rm Dmp}$	(2)								
	Normal	Class			Cla	ss 6		Cla	ss 5	Cla	ss 4	Class 2					
Ope	en Bearin	gs	Sealed/ Shielded Bearings	Ope	en Beari	ngs	Sealed/ Shielded Bearings	Open B	earings	Open B	earings	Open Bearings	Normal	Class	Class	Class	Class
	Diameter	r Series		I	Diamete	er Serie		Dian Sei	neter ries	Dian Sei	neter Ties	Diameter Series	Class	6	5	4	2
9	0, 1	2, 3, 4	2, 3, 4	9	0, 1	2, 3, 4	0, 1, 2, 3, 4	9	1, 2, 3, 4	9	1, 2, 3, 4	0, 1, 2, 3, 4	1				
	Ma	х.			M	ax.		Ma	ax.	Ma	ax.	Max.	Max.	Max.	Max.	Max.	Max.
10 10 12	8 8 9	6 6 7	10 10 12	9 9 10	7 7 8	5 5 6	9 9 10	5 5 6	4 4 5	4 4 5	3 3 4	2.5 2.5 4	6 6 7	5 5 6	333	2 2 2.5	1.5 1.5 2
12 9 7 12 14 11 8 16 16 13 10 20 19 19 11 26				11 14 16	9 11 16	7 8 10	13 16 20	7 9 10	5 7 8	6 7 8	5 5 6	4 4 5	8 10 11	7 8 10	4 5 5	3 3.5 4	2 2 2.5
23 31 38	23 31 38	14 19 23	30 38 —	19 23 25	19 23 25	11 14 15	25 30 —	11 13 15	8 10 11	9 10 11	7 8 8	5 7 8	14 19 23	11 14 15	6 7 8	5 5 6	2.5 3.5 4
44 50 56	44 50 56	26 30 34		31 35 41	31 35 41	19 21 25		18 20 23	14 15 17	13 15 —	10 11	8 10 	26 30 34	19 21 25	9 10 12	7 8 —	4 5 —
63 94 125	63 94 125	38 55 75		48 56 75	48 56 75	29 34 45		28 35 —	21 26 —				38 55 75	29 34 45	14 18 —		
_		_		_	_	_	_		_	_	_	_	_	_	_	_	
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_		—	—	—		—			-	-	—	—	-	—		_	-

Jnits	;	μm
-------	---	----

		K_{ea}				$S_{D}^{(4)}$			$S_{ea}(^{3})(^{4}$)		$V_{C_{\rm S}}(5)$		Nominal (Dutside
Normal Class	Class 6	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	Diame D (mn	eter
 Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	over	incl.
15 15 15	8 8 9	5 5 6	3 3 4	1.5 1.5 2.5	8 8 8	4 4 4	1.5 1.5 1.5	8 8 8	5 5 5	1.5 1.5 2.5	5 5 5	2.5 2.5 2.5	1.5 1.5 1.5	2.5 6 18	6 18 30
20 25 35	10 13 18	7 8 10	5 5 6	2.5 4 5	8 8 9	4 4 5	1.5 1.5 2.5	8 10 11	5 5 6	2.5 4 5	5 6 8	2.5 3 4	1.5 1.5 2.5	30 50 80	50 80 120
40 45 50	20 23 25	11 13 15	7 8 10	5 5 7	10 10 11	5 5 7	2.5 2.5 4	13 14 15	7 8 10	5 5 7	8 8 10	5 5 7	2.5 2.5 4	120 150 180	150 180 250
60 70 80	30 35 40	18 20 23	11 13 —	7 8 —	13 13 15	8 10 —	5 7	18 20 23	10 13 —	7 8 —	11 13 15	7 8 —	5 7	250 315 400	315 400 500
100 120 140	50 60 75	25 30 —			18 20 —			25 30 —			18 20 —			500 630 800	630 800 1 000
 160 190 220 250		 				 								1 000 1 250 1 600 2 000	1 250 1 600 2 000 2 500

Table 7. 3 Tolerances for Metric Series Tapered Roller Bearings Table 7. 3. 1 Tolerances for Inner Ring Bore Diameter and Running Accuracy

	mina Diam	I Bore eter					Δ	dmp				4	1 _{ds}		V	fsp			V_{d}	'np	
	d (mr		C	rmal lass ss 6X		(Cla	ss 6)	Cla	ss 5	Cla	ıss 4	Cla	iss 4	Normal Class Class 6X	(Class 6)	Class 5	Class 4	Normal Class Class 6X	(Class 6)	Class 5	Class 4
ove	er	incl.	high	low	ł	high	low	high	low	high	low	high	low	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.
1 1 3		18 30 50	0 0 0	- 1 - 1 - 1	2	0 0 0	- 7 - 8 -10	0 0 0	- 7 - 8 -10	0 0 0	- 5 - 6 - 8	0 0 0	- 5 - 6 - 8	12 12 12	7 8 10	5 6 8	4 5 6	9 9 9	5 6 8	5 5 5	4 4 5
5 8 12	0	80 120 180	0 0 0	- 1 - 2 - 2	0	0 0 0	-12 -15 -18	0 0 0	-12 -15 -18	0 0 0	- 9 -10 -13	0 0 0	- 9 -10 -13	15 20 25	12 15 18	9 11 14	7 8 10	11 15 19	9 11 14	6 8 9	5 5 7
18 25 31	0	250 315 400	0 0 0	- 3 - 3 - 4	5	0	-22 	0 0 0	-22 -25 -30	0 0	-15 -18 	0 0	-15 -18 	30 35 40	22 — —	17 19 23	11 12 —	23 26 30	16 	11 13 15	8 9 —
40 50 63	0	500 630 800	0 0 0	- 4 - 6 - 7	0	_		0 0 0	-35 -40 -50					45 60 75		28 35 45		34 40 45		17 20 25	
80 1 00 1 25 1 60	0 -	1 000 1 250 1 600 2 000	0 0 0 0	-10 -12 -16 -20	5 0			0 0 0	-60 -75 -90	 				100 125 160 200	 	60 75 90	 	55 65 80 100	 	30 37 45 —	

Notes (1) 10 mm is included in this group.

Remarks
 Remarks
 The bore diameter "ino-go side" tolerances (high) specified in this table do not necessarily apply within a distance from the ring face to 1.2 times the chamfer dimension r (max.).
 Some of these tolerances conform to NSK standards.

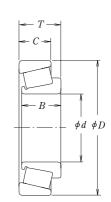
Table 7. 3. 2 Tolerances for Outer Ring Outside Diameter and Running Accuracy

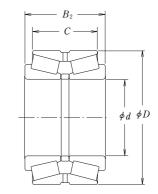
	ninal Diam	Outside				Δ	Omp				2	1 _{Ds}		V	Dsp			V	mp	
ľ	Diann D (mr		C	rmal lass ss 6X	(Cla	ıss 6)	Cla	ıss 5	Cla	uss 4	Cla	uss 4	Normal Class Class 6X	(Class 6)	Class 5	Class 4	Normal Class Class 6X	(Class 6)	Class 5	Class 4
OV	er	incl.	high	low	high	low	high	low	high	low	high	low	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.
3	8(1) 0 0	30 50 80	0 0 0	- 12 - 14 - 16	0 0 0	- 8 - 9 -11	0 0 0	- 8 - 9 - 11	0 0 0	- 6 - 7 - 9	0 0 0	- 6 - 7 - 9	12 14 16	8 9 11	6 7 8	5 5 7	9 11 12	6 7 8	5 5 6	4 5 5
8 12 15		120 150 180	0 0 0	- 18 - 20 - 25	0 0 0	-13 -15 -18	0 0 0	- 13 - 15 - 18	0 0 0	-10 -11 -13	0 0 0	-10 -11 -13	18 20 25	13 15 18	10 11 14	8 8 10	14 15 19	10 11 14	7 8 9	5 6 7
18 25 31	0	250 315 400	0 0 0	- 30 - 35 - 40	0 0 0	-20 -25 -28	0 0 0	- 20 - 25 - 28	0 0 0	-15 -18 -20	0 0 0	-15 -18 -20	30 35 40	20 25 28	15 19 22	11 14 15	23 26 30	15 19 21	10 13 14	8 9 10
40 50 63 80	0	500 630 800 1000	0 0 0 0	- 45 - 50 - 75 -100			0 0 0 0	- 33 - 38 - 45 - 60					45 60 80 100		26 30 38 50		34 38 55 75		17 20 25 30	
1 00 1 25 1 60 2 00	0 2	1 250 1 600 2 000 2 500	0 0 0 0	-125 -160 -200 -250			0 0 0	- 80 -100 -125 					130 170 210 265	 	65 90 120 —	 	90 100 110 120	 	38 50 65 —	

Notes (1) 18 mm is included in this group.

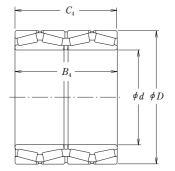
(c) Not applicable to bearings with flanges.
 Remarks
 1. The outside diameter "no-go side" tolerances (low) specified in this table do not necessarily apply within a distance from the ring face to 1.2 times the chamfer dimension r (max.).

2. Some of these tolerances conform to NSK standards.


					Units : µ	ım
	K	ia		S	S _d	$S_{_{ia}}$
Normal Class Class 6X	(Class 6)	Class 5	Class 4	Class 5	Class 4	Class 4
Max.	Max.	Max.	Max.	Max.	Max.	Max.
15 18 20	7 8 10	5 5 6	3 3 4	7 8 8	3 4 4	3 4 4
25 30 35	10 13 18	7 8 11	4 5 6	8 9 10	5 5 6	4 5 7
50 60 70	20 	13 13 15	8 9 —	11 13 15	7 8 —	8 9 —
80 90 100		20 25 30		17 20 25		
115 130 150 170	 	37 45 55 —		30 40 50 —		

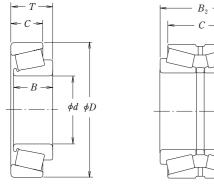

Units : um

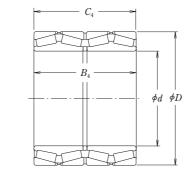
 $S_{D}^{(2)}$

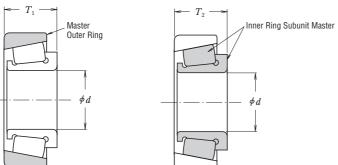

 $S_{ea}(2)$

K

Normal Class Class 6X	(Class 6)	Class 5	Class 4	Class 5	Class 4	Class 4
Max.	Max.	Max.	Max.	Max.	Max.	Max.
18 20 25	9 10 13	6 7 8	4 5 5	8 8 8	4 4 4	5 5 5
35 40 45	18 20 23	10 11 13	6 7 8	9 10 10	5 5 5	6 7 8
50 60 70	25 30 35	15 18 20	10 11 13	11 13 13	7 8 10	10 10 13
80 100 120 140		24 30 36 43		17 20 25 30	 	
160 180 200 220	 	52 62 73	 	38 50 65 —	 	


Table 7. 3 Tolerances for Metric Series Table 7. 3. 3 Tolerances for Width, Overall Bearing Width,


	al Bore neter						4	1_{Bs}											4	⊿ _{Cs}					
	d m)		lorn Clas		(Cl	ass 6)	Cla	ss 6X	C	las	s 5	Cl	ass 4		lorı Cla		(Cl	ass 6)	Cla	iss 6X	c	las	s 5	Cla	ass 4
over	incl.	high	I	ow	high	low	high	low	high	I	OW	high	low	high		low	high	low	high	low	high	I	OW	high	low
10 18 30	(1) 18 30 50	0 0 0	- - -	120 120 120	0 0 0	-120 -120 -120	0 0 0	-50 -50 -50	0 0 0	- - -	200 200 240	0 0 0	-200 -200 -240	0 0 0		120 120 120	0 0 0	-120 -120 -120	0 0 0	-100 -100 -100	0 0 0	- - -	200 200 240	0 0 0	-200 -200 -240
50 80 120	80 120 180	0 0 0		150 200 250	0 0 0	-150 -200 -250	0 0 0	-50 -50 -50	0 0 0		300 400 500	0 0 0	-300 -400 -500	0 0 0		150 200 250	0 0 0	-150 -200 -250	0 0 0	-100 -100 -100	0 0 0		300 400 500	0 0 0	-300 -400 -500
180 250 315	250 315 400	0 0 0	- - -	300 350 400	0 	-300	0 0 0	-50 -50 -50	0 0 0	- - -	600 700 800	0 0	-600 -700 	0 0 0		300 350 400	0	-300 	0 0 0	-100 -100 -100	0 0 0	- - -	600 700 800	0 0	-600 -700
400 500 630	500 630 800	0 0 0	- - -	450 500 750	=		0	-50 	0 0 0		900 100 600			0 0 0		450 500 750			0	-100	=		900 100 600	-	
1 000 1 250		0 0 0	-1 -1	000 250 600 2000	 _ 		 -		0 0 0	-2	000	 -		0 0 0 0		1 000 1 250 1 600 2 000	 _ _		 _ _		 _ _	-2	2 000		


Notes (1) 10 mm is included in this group. **Remarks** The nominal effective width of the inner subunit T_1 is defined as the overall bearing width of the inner subunit The nominal effective width of the outer ring T_2 is defined as the overall bearing width of the outer ring combined

 $\phi d \phi D$

with a master inner subunit.

Tapered	Roller	Bearings
		- · · · · · ·

and Combined Bearing Width

						\varDelta_{Ts}									Δ	Tls			
1	Norr Cla			(Clas	ss 6)	Class	s 6X	Cla	ss 5	Cla	ss 4	Nor Cla		Class	s 6X	Cla	ss 5	Cla	ss 4
hig	jh	low		high	low	high	low	high	low	high	low	high	low	high	low	high	low	high	low
+ 2	200 200 200	(õ	+200 +200 +200	0 0 0	+100 +100 +100	0 0 0		-200 -200 -200	+200 +200 +200		+100 +100 +100	0 0 0	+ 50 + 50 + 50	0 0 0	+100	-100 -100 -100	+100 +100 +100	-100
+ 2	200 200 350	- 20 - 25	Õ	+200 +200 +350	0 -200 -250	+100 +100 +150	0 0 0	+200	-200 -200 -250	+200 +200 +350	-200	+100 +100 +150	0 -100 -150	+ 50 + 50 + 50	0 0 0	+100	-100 -100 -150	+100 +100 +150	-100
+ 3	350	- 25 - 25 - 40	0	+350 +350 —	-250 -250 	+150 +200 +200	0 0 0	+350 +350 +400		+350 +350 —		+150 +150 +200	-150	+ 50 +100 +100	0 0 0	+150	-150 -150 -200	+150 +150 	
+ 5	500	- 40 - 50 - 60	õ			+200	0	+400 +500 +600				+225	-225	+100	0	+225	-225		
		- 75 - 90 -1 05 -1 20	0					+750 +750 +900	-750										

Units : µm

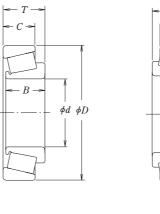
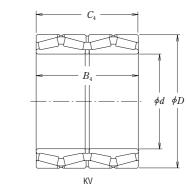

_	Nor		Class		T2s Cla	ss 5	Cla	ss 4	Δ		د الم	riation ⊿ _{C4s}	Nomina Diam	al Bore neter 1
_	Cla high	low	high	low	high	low	high	low	All Classes of Dou high	ble-Row Bearings	All Classes of Fo high	ur-Row Bearings Iow	over	incl.
_	+100 +100 +100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			+100 +100 +100	-100 -100 -100	+100 +100 +100	-100 -100 -100	+ 200 + 200 + 200	- 200 - 200 - 200			10 18 30	18 30 50
	+100 +100 +200	0 -100 -100	+ 50 + 50 +100	0 0 0	+100 +100 +200	-100 -100 -100	+100 +100 +200	-100 -100 -100	+ 300 + 300 + 400	- 300 - 300 - 400	+ 300 + 400 + 500	- 300 - 400 - 500	50 80 120	80 120 180
	+200 +200 +200	-100 -100 -200	+100 +100 +100	0 0 0	+200 +200 +200	-100 -100 -200	+200 +200 —	-100 -100 	+ 450 + 550 + 600	- 450 - 550 - 600	+ 600 + 700 + 800	- 600 - 700 - 800	180 250 315	250 315 400
	+225	-225 	+100	0	+225 —	-225 			+ 700 + 800 +1 200	- 700 - 800 -1 200	+ 900 + 1000 + 1500	- 900 -1 000 -1 500	400 500 630	500 630 800
_			 									 	800 1 000 1 250 1 600	1 600

Table 7. 4 Tolerances for Inch Series Tapered Roller Bearings

(Refer to Page A126 Table 7.1 for more information on "CLASS ** " ANSI/ABMA tolerances.)

Table 7. 4. 1 Tolerances for Inner Ring Bore Diameter

								Unit	s:µm
	Nominal Bo ¢	1				Δ	ds		
over		incl.		CLAS	S 4, 2	CLAS	SS 3, 0 CLAS		SS 00
(mm)	1/25.4	(mm)	1/25.4	high	low	high	low	high	low
	3.0000 10.5000	76.200 266.700 304.800	3.0000 10.5000 12.0000	+ 13 + 25 + 25	0 0 0	+13 +13 +13	0 0 0	+8 +8 -	0
304.800 609.600 914.400 1 219.200	12.0000 24.0000 36.0000 48.0000	609.600 914.400 1 219.200 —	24.0000 36.0000 48.0000 —	+ 51 + 76 +102 +127	0 0 0 0	+25 +38 +51 +76	0 0 0 0	- - - -	



and Radial Runout of Inner and Outer Rings

 B_2

KBE

 $\phi_d \phi_D$

Table 7. 4. 2 Tolerances for Outer Ring Outside Diameter

	Nominal Outs <i>I</i>	side Diameter)				Δ	Ds		
over				CLAS	S 4, 2	CLAS	S 3, 0	CLASS 00	
(mm)	1/25.4	(mm)	1/25.4	high	low	high	low	high	low
 266.700 304.800		266.700 304.800 609.600	10.5000 12.0000 24.0000	+ 25 + 25 + 51	0 0 0	+13 +13 +25	0 0 0	+8 +8 -	0 0
609.600 914.400 1 219.200	24.0000 36.0000 48.0000	914.400 1 219.200 —	36.0000 48.0000 —	+ 76 +102 +127	0 0 0	+38 +51 +76	0 0 0	 	_ _ _

Units : µm K_{ia} , K_{ea} CLASS 4 CLASS 2 CLASS 3 CLASS 0 CLASS 00 max. max. max. max. max. 51 51 51 38 38 38 8 4 2 2 8 18 4 _ 76 76 76 51 ____ 51 76 76 _ _ _ _ _ _

Overall Width and Combined Width

			-							Uni	ts : μm	
			Dou		arings (KBE 1 _{B 2s}	ype)				(KV	w Bearings Type) , \varDelta_{C4s}	
CLA	CLASS 4 CLASS 2 CLASS 3 CLASS 0,00									CLA	CLASS 4, 3	
0123	CLASS 4		01210502		$D \le 508.000 \text{ (mm)}$		D>508.000 (mm)		55 0,00	0121004,0		
high	low	ow high low		high	low	high	low	high	low	high	low	
+406 +711	0 -508	+406 +406	0 -203	+406 +406	-406 -406	+406 +406	-406 -406	+406 +406	-406 -406	+1 524 +1 524	-1 524 -1 524	
+762 +762	-762 -762	+762	-762 -	+406 +762	-406 -762	+762 +762	-762 -762	-		+1 524 +1 524	-1 524 -1 524	

Table 7. 4. 3 Tolerances for

	Nominal Bo	re Diameter d						Δ	Ts				
0V	over incl.		ıcl.	CLASS 4 CLASS 2			CLASS 3 D≦508.000 (mm) D>508.000 (mm)				CLASS 0, 00		
(mm)	1/25.4	(mm)	1/25.4	high	low	high	low	high	low	high	low	high	low
	_ 4.0000	101.600 304.800	4.0000 12.0000	+203 +356	0 —254	+203 +203	0 0	+203 +203	-203 -203	+203 +203	-203 -203	+203 +203	-203 -203
304.800 609.600	12.0000 24.0000	609.600 _	24.0000	+381 +381	-381 -381	+381	-381 -	+203 +381	-203 -381	+381 +381	381 381	_	Ξ

Table 7. 5 TolerancesTable 7. 5. 1 Tolerances for Inner Rings

Diam	-			Δ	dmp				V_{dp}			V_{dmp}			\varDelta_{Bs} (or	⊿ _{Cs}) (1)
a (mi			rmal valent		ass 6 ivalent		ass 5 valent	Normal Equivalent	Class 6 Equivalent	Class 5 Equivalent	Normal Equivalent	Class 6 Equivalent	Class 5 Equivalent	Cla	rmal 1ss 6 valent		ass 5 ivalent
over	incl.	high	low	high	low	high	low	max.	max.	max.	max.	max.	max.	high	low	high	low
2.5	10	0	- 8	0	-7	0	-5	6	5	4	6	5	3	0	-120	0	- 40
10	18	0	- 8	0	-7	0	-5	6	5	4	6	5	3	0	-120	0	- 80
18	30	0	-10	0	-8	0	-6	8	6	5	8	6	3	0	-120	0	-120

Note (1) The actual width deviation and width variation of an outer ring is determined according to the inner ring of the same bearing.

Remark The bore diameter "no-go side" tolerances (high) specified in this table do not necessarily apply within a distance from the ring face to 1.2 times the chamfer dimension r (max.).

for Magneto Bearings

and Width of Outer Rings

_								Un	its : μm
	${V}_{B{ m s}}$ (or	V _{Cs}) (¹)	Δ	Ts		K _{ia}		S _d	S _{ia}
_	Normal Class 6 Equivalent	Class 5 Equivalent	Normal Class 6 Class 5 Equivalent		Normal Equivalent	Class 6 Equivalent	Class 5 Equivalent	Class 5 Equivalent	Class 5 Equivalent
	max.	max.	high	low	max.	max.	max.	max.	max.
	15	5	+120	-120	10	6	4	7	7
	20	5	+120	-120	10	7	4	7	7
_	20	5	+120	-120	13	8	4	8	8

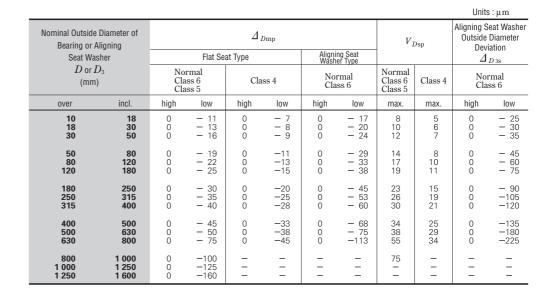
Table 7. 5. 2 Tolerances

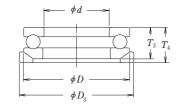
Nominal Diam D	eter			Bearing S	eries E		\varDelta_{I}	Omp		Bearing Se	eries EN	I		-	V_{Dp}	
(mm)		Norr Equiva		Clas Equiva		Clas Equiv		Nor Equiv		Clas Equiv		Clas Equiv		Normal Equivalent	Class 6 Equivalent	Class 5 Equivalent
over	incl.	high	low	high	low	high	low	high	low	high	low	high	low	max.	max.	max.
6	18	+ 8	0	+7	0	+5	0	0	- 8	0	-7	0	-5	6	5	4
18	30	+ 9	0	+8	0	+6	0	0	- 9	0	-8	0	-6	7	6	5
30	50	+11	0	+9	0	+7	0	0	-11	0	-9	0	-7	8	7	5

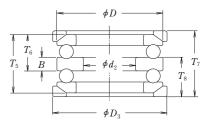
Remark The outside diameter "no-go side" tolerances (low) do not necessarily apply within a distance from the ring face to 1.2 times the chamfer dimension r (max.).

for Outer Rings

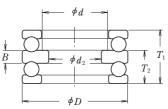
						Units : µ	ιm
	V _{Dmp}			K _{ea}		S _{ea}	S _D
Normal Equivalent	Class 6 Equivalent	Class 5 Equivalent	Normal Equivalent	Class 6 Equivalent	Class 5 Equivalent	Class 5 Equivalent	Class 5 Equivalent
max.	max.	max.	max.	max.	max.	max.	max.
6	5	3	15	8	5	8	8
7	6	3	15	9	6	8	8
8	7	4	20	10	7	8	8


Table 7. 6 Tolerances for Thrust Ball Bearings


Table 7. 6. 1 Tolerances for Shaft Washer Bore Diameter and Running Accuracy

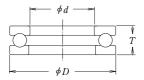

										Units	∶μm
Nomina Diam d or	eter		<i>∆</i> _{<i>d</i>mp} 0	r⊿ _{d2mp}		V _{dsp} 0	r V _{d2sp}		S _i or	S _e (1)	
(mr	-	Class 6 Class 4		Normal Class 6 Class 5	Class 4	Normal	Class 6	Class 5	Class 4		
over	incl.	high	low	high	low	max.	max.	max.	max.	max.	max.
_ 18 30	18 30 50	0 0 0	- 8 - 10 - 12	0 0 0	- 7 - 8 -10	6 8 9	5 6 8	10 10 10	5 5 6	3 3 3	2 2 2
50 80 120	80 120 180	0 0 0	- 15 - 20 - 25	0 0 0	-12 -15 -18	11 15 19	9 11 14	10 15 15	7 8 9	4 4 5	3 3 4
180 250 315	250 315 400	0 0 0	- 30 - 35 - 40	0 0 0	-22 -25 -30	23 26 30	17 19 23	20 25 30	10 13 15	5 7 7	4 5 5
400 500 630	500 630 800	0 0 0	- 45 - 50 - 75	0 0 0	-35 -40 -50	34 38 -	26 30 —	30 35 40	18 21 25	9 11 13	6 7 8
800 1 000	1 000 1 250	0 0	-100 -125	-	_	=	-	45 50	30 35	15 18	_

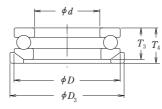
Note (1) For double-direction bearings, the thickness variation does not depend on the bore diameter d_2 , but rather on d for single-direction bearings with the same D in the same Diameter Series.


The thickness variation of housing washers S_e applies only to flat-seat thrust bearings.

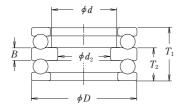
ϕd φD

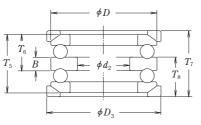
I Inite


Table 7. 6. 2 Tolerances for Outside Diameter of Housing Washers and Aligning Seat Washers

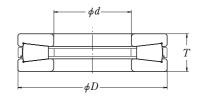

Table 7. 6. 3 Tolerances for Thrust Ball Bearing Height and Central Washer Height

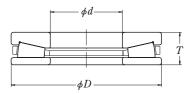
														Units .	μ
Nomin	al Bore		Flat Se	at Type		Ali	gning Seat	Washer	Туре	Wit	h Aligning	Seat Wa	sher		Deviation
	neter	Δ_{Ts} o	or \varDelta $_{T2s}$	Δ	T1s	ΔT_{3s}	or \varDelta $_{T6s}$	Δ	T5s	$\Delta_{T_{48}}$	or \varDelta $_{T88}$	Δ	<i>T</i> 7s		al Washer 1 _{Bs}
<i>d</i> (m	(1) m)		l, Class 6 , Class 4				rmal ass 6		rmal ss 6	Noi Cla	mal ss 6	Nor Clas	mal ss 6		l, Class 6 5, Class 4
over	incl.	high	low	high	low	high	low	high	low	high	low	high	low	high	low
- 30 50	30 50 80	0 0 0	- 75 -100 -125	+ 50 + 75 +100	-150 -200 -250	0 0 0	- 75 -100 -125	+ 50 + 75 +100	-150 -200 -250	+ 50 + 50 + 75	- 75 -100 -125	+150 +175 +250	-150 -200 -250	0 0 0	- 50 - 75 -100
80 120 180	120 180 250	0 0 0	-150 -175 -200	+125 +150 +175	-300 -350 -400	0 0 0	-150 -175 -200	+125 +150 +175	-300 -350 -400	+ 75 +100 +100	-150 -175 -200	+275 +350 +375	-300 -350 -400	0 0 0	-125 -150 -175
250 315	315 400	0 0	-225 -300	+200 +250	-450 -600	0 0	-225 -300	+200 +250	-450 -600	+125 +150	-225 -275	+450 +550	-450 -550	0 0	-200 -250


Note (1) For double-direction bearings, classification depends on d for single-direction bearings with the same D in the same Diameter Series.


Remark Δ_{T_s} in the table is the deviation in the respective heights T in the figures below.

Units ' u m

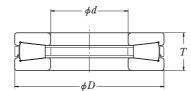

Table 7. 7 Tolerances for Tapered Roller Thrust Bearings

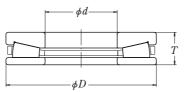

Table 7. 7. 1 Tolerances for Bore Diameters of Shaft Washers and Height (Metric, Normal Class) $$_{Units\,:\,\mu m}$$

Nominal Bo C (m	1	Δ	d mp	2	1 _{Ts}
over	incl	high	low	high	low
80	120	0	-20	0	-150
120	180	0	-25	0	-175
180	250	0	-30	0	-200
250	315	0	-35	0	-225
315	400	0	-40	0	-300
400	500	0	-45	0	-350
500	630	0	-50	0	-450
630	800	0	-75	0	-550
800	1 000	0	-100	0	-700
1 000	1 250	0	-125	0	-900
1 250	1 600	0	-160	0	-1 200

Table 7. 7. 2 Tolerances for Housing Washer Outside Diameters (Metric, Normal Class) Units : µ m

1101	intui oit	.007		
No	minal Outs <i>L</i> (m		Δ	Dmp
	over	incl	high	low
	180	250	0	-30
	250	315	0	-35
	315	400	0	-40
	400	500	0	-45
	500	630	0	-50
	630	800	0	-75
1	800	1 000	0	-100
	000	1 250	0	-125
	250	1 600	0	-160
	600	2 000	0	-200


Table 7. 7 Tolerances for Tapered Roller Thrust Bearings


Table 7. 7. 3 Tolerances for Bore Diameters of Shaft Washers and Height (Inch, Class 4) $$U_{\text{nits}\,:\,\mu m}$$

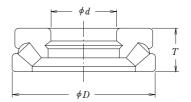
_							011113 . µ	tiii
		Nominal Bo	Δ_d	mp	Δ	Ts		
	0\	/er	in	cl				
	(mm)	(inch)	(mm)	(inch)	high	low	high	low
	 304.800	 12.0000	304.800 609.600	12.0000 24.0000	+25 +51	0 0	+381 +381	-381 -381
	609.600 914.400	24.0000 36.0000	914.400 1 219.200	36.0000 48.0000	+76 +102	0 0	+381 +381	-381 -381

Table 7. 7. 4 Tolerances for Housing Washer Outside Diameters (Inch, Class 4) $$_{Units\,:\,\mu m}$$

		()	,	units : µ	m						
	Nominal Outside Diameter D										
0\	rer	in	cl								
(mm)	(inch)	(mm)	(inch)	high	low						
304.800 609.600	 12.0000 24.0000	304.800 609.600 914.400	12.0000 24.0000 36.0000	+25 +51 +76	0 0 0						
914.400 1 219.200	36.0000 48.0000	1 219.200 —	48.0000	+102 +127	0 0						

Table 7.8 Tolerances for Thrust Spherical Roller Bearings

Table 7. 8. 1 Tolerances for Bore Diameters of Shaft Rings and Height (Normal Class)


						Un	its : µm		
	nal Bore				Reference				
	imeter <i>d</i> mm)	Δ	Imp	V_{dsp}	S _d	Δ	Ts		
over	incl.	high	low	max.	max.	high	low		
50 80 120	80 120 180	0 0 0	15 20 25	11 15 19	25 25 30	+150 +200 +250	-150 -200 -250		
180 250 315	250 315 400	0 0 0	-30 -35 -40	23 26 30	30 35 40	+300 +350 +400	-300 -350 -400		
400	500	0	-45	34	45	+450	-450		

Remark The bore diameter "no-go side" tolerances (high) specified in this table do not necessarily apply within a distance from the ring face to 1.2 times the chamfer dimension r (max.).

Table 7. 8. 2 Tolerances for Housing Ring Diameter (Normal Class) Units : µm

1	side Diameter D m)	\varDelta_{Dmp}				
over	incl.	high	low			
120	180	0	- 25			
180	250	0	- 30			
250	315	0	- 35			
315	400	0	- 40			
400	500	0	- 45			
500	630	0	- 50			
630	800	0	- 75			
800	1 000	0	-100			

Remark The outside diameter "no-go side" tolerances (low) specified in this table do not necessarily apply within a distance from the ring face to 1.2 times the chamfer dimension r (max.).

Units : µm

Table 7. 9 Tolerances of

CLASS 5P, CLASS 7P, and CLASS 9P

(1) Tolerances for Inner Rings

	Nominal Bore		Δ_{dmp}			\varDelta_{ds}			V _{dp}		V _{dmp}		\varDelta_{Bs}			
C	Diame d (mm			SS 5P SS 7P	CLA	SS 9P	CLAS CLAS		CLAS	SS 9P	CLASS 5P CLASS 7P	CLASS 9P	CLASS 5P CLASS 7P	CLASS 9P	CLA CLA	le Brgs ASS 5P ASS 7P ASS 9P
0	ver	incl.	high	low	high	low	high	low	high	low	max.	max.	max.	max.	high	low
	_	10	0	-5.1	0	-2.5	0	-5.1	0	-2.5	2.5	1.3	2.5	1.3	0	-25.4
1	10	18	0	-5.1	0	-2.5	0	-5.1	0	-2.5	2.5	1.3	2.5	1.3	0	-25.4
1	18	30	0	-5.1	0	-2.5	0	-5.1	0	-2.5	2.5	1.3	2.5	1.3	0	-25.4

Note (1) Applicable to bearings for which the axial clearance (preload) is to be adjusted by combining two selected bearings. Remark Please consult with NSK regarding CLASS 3P and the tolerances of Metric Series instrument ball bearings.

Instrument Ball Bearings (Inch Series)

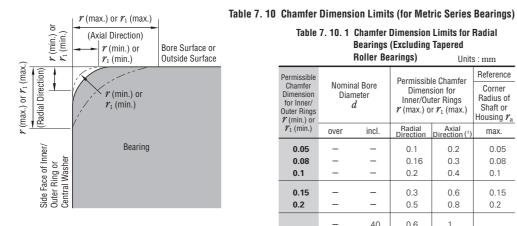
(ANSI/ABMA Equivalent)

and Width of Outer Rings

(or \varDelta_{Cs})) <i>V</i> _{Bs}			K _{ia}			S _{ia}			S _d		
Combined Brgs (1) CLASS 5P CLASS 7P CLASS 9P	CLASS 5P	CLASS 7P	CLASS 9P	CLASS 5P	CLASS 7P	CLASS 9P	CLASS 5P	CLASS 7P	CLASS 9P	CLASS 5P	CLASS 7P	CLASS 9P
high low	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.
0 -400	5.1	2.5	1.3	3.8	2.5	1.3	7.6	2.5	1.3	7.6	2.5	1.3
0 -400	5.1	2.5	1.3	3.8	2.5	1.3	7.6	2.5	1.3	7.6	2.5	1.3
0 -400	5.1	2.5	1.3	3.8	3.8	2.5	7.6	3.8	1.3	7.6	3.8	1.3

(2) Tolerances for

Nomi		$\Delta_{D \mathrm{mp}}$			\varDelta_{Ds}					V _{Dp}			V _{Dmp}				
Diam	Outside Diameter D		CLASS 5P					SS 5P SS 7P		CLA	SS 9P	CLASS 5P CLASS 7P		CLASS 9P		CLASS 5P CLASS 7P	
(mr	n)		SS 7P	CLA	SS 9P	0	oen	Shie Se	lded aled	0	pen	Open	Shielded Sealed	Open	Open	Shielded Sealed	Open
over	incl.	high	low	high	low	high	low	high	low	high	low	max.	max.	max.	max.	max.	max.
-	18	0	-5.1	0	-2.5	0	-5.1	+1	-6.1	0	-2.5	2.5	5.1	1.3	2.5	5.1	1.3
18	30	0	-5.1	0	-3.8	0	-5.1	+1	-6.1	0	-3.8	2.5	5.1	2	2.5	5.1	2
30	50	0	-5.1	0	-3.8	0	-5.1	+1	-6.1	0	-3.8	2.5	5.1	2	2.5	5.1	2


Notes (1) Applicable to flange width variation for flanged bearings. (2) Applicable to the flange back face.

Outer Rings

Outer h	illiys														U	nits : µ m
	<i>V</i> _{Cs} (¹)			S _D			K _{ea}			S _{ea}			iation of e Outside	Deviation of Flange Width		Flange Backface Runout
CLASS	CLASS	CLASS	CLASS	CLASS	CLASS	CLASS	CLASS	CLASS	CLASS	CLASS CLASS		$\begin{array}{c} \text{Diameter} \\ \Delta_{D 18} \\ \hline \\ \text{CLASS 5P} \\ \text{CLASS 7P} \end{array}$		Å C 18		with Raceway (²) S _{ea1}
5P	7P	9P	5P	7P	9P	5P	7P	9P	5P 7P		9P					CLASS 5P CLASS 7P
max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	high	low	high	low	max.
5.1	2.5	1.3	7.6	3.8	1.3	5.1	3.8	1.3	7.6	5.1	1.3	0	-25.4	0	-50.8	7.6
5.1	2.5	1.3	7.6	3.8	1.3	5.1	3.8	2.5	7.6	5.1	2.5	0	-25.4	0	-50.8	7.6
5.1	2.5	1.3	7.6	3.8	1.3	5.1	5.1	2.5	7.6	5.1	2.5	0	-25.4	0	-50.8	7.6

Linite

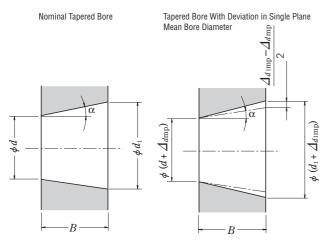
BEARING TOLERANCES

- r : Chamfer dimension of inner/outer ring
- \mathcal{F}_1 : Chamfer dimension of inner/outer ring (front side) or of central washer of thrust ball bearings
- **Remark** The precise shape of chamfer surfaces has not been specified but its profile in the axial plane must not intersect an arc of radius $r(\min)$ or $r_1(\min)$ that touches the side face of an inner ring or central washer and bore surface or the side face of an outer ring and outside surface.

Table 7. 10. 1 Chamfer Dimension Limits for Radial Bearings (Excluding Tapered Roller Bearings) Units : mm									
Permissible Chamfer Dimension for Inner/ Outer Rings	Nomin Dian	al Bore neter d	Permissib Dimen: Inner/Ou	Units le Chamfer sion for ter Rings r γ_1 (max.)	S : mm Reference Corner Radius of Shaft or				
\mathcal{V} (min.) or \mathcal{V}_1 (min.)	over	incl.	Radial Direction	Axial Direction (1)	Housing γ_a max.				
0.05 0.08 0.1			0.1 0.16 0.2	0.2 0.3 0.4	0.05 0.08 0.1				
0.15 0.2	_	_	0.3 0.5	0.6 0.8	0.15 0.2				
0.3	0.3 - 40 40 -		0.6 0.8	1 1	0.3				
0.6	_ 40	40 _	1 1.3	2 2	0.6				
1	_ 50	50 —	1.5 1.9	3 3	1				
1.1	- 120 120 -		2 2.5	3.5 4	1				
1.5	_ 120	120 —	2.3 3	4 5	1.5				
2	— 80 220	80 220 —	3 3.5 3.8	4.5 5 6	2				
2.1	_ 280	280 —	4 4.5	6.5 7	2				
2.5	 100 280	100 280 —	3.8 4.5 5	6 6 7	2				
3	_ 280	280 —	5 5.5	8 8	2.5				
4 5	-	_	6.5 8	9 10	3 4				
6 7.5 9.5	_ _ _		10 12.5 15	13 17 19	5 6 8				
12 15 19		- - -	18 21 25	24 30 38	10 12 15				

Table 7. 10. 2 Chamfer Dimension Limits for Tapered Roller Bearings

Table 7. 10. 3 Chamfer Dimension Limits for Thrust Bearings


				Unite	s : mm
Permissible Chamfer Dimension for Inner/ Outer Rings	Nominal Diame	Bore or Outside eter (1) r D	Dimension Outer ℋ(m	le Chamfer 1 for Inner/ Rings nax.)	Reference Corner Radius of Shaft or Housing γ_a
 (min.)	over	incl.	Radial Direction	Axial Direction	max.
0.15	-	-	0.3	0.6	0.15
0.3	_ 40	40 —	0.7 0.9	1.4 1.6	0.3
0.6	_ 40	40 —	1.1 1.3	1.7 2	0.6
1	— 50	50 —	1.6 1.9	2.5 3	1
1.5	 120 250	120 250 —	2.3 2.8 3.5	3 3.5 4	1.5
2	 120 250	120 250 —	2.8 3.5 4	4 4.5 5	2
2.5	 120 250	120 250 —	3.5 4 4.5	5 5.5 6	2
3		120 250 400	4 4.5 5 5.5	5.5 6.5 7 7.5	2.5
4		120 250 400 —	5 5.5 6 6.5	7 7.5 8 8.5	3
5	_ 180	180 —	6.5 7.5	8 9	4
6	_ 180	180 —	7.5 9	10 11	5

Permissible Chamfer Dimension for Shati (or Central)/Housing Washers r (mix.) or r1 (mix) Reference 0.05 0.01 Corner Radius of Shaft or Housing r (max.) or r1 (max) 0.05 0.1 0.05 0.08 0.16 0.08 0.1 0.2 0.1 0.1 0.2 0.1 0.15 0.3 0.15 0.2 0.5 0.2 0.3 0.8 0.3 0.6 1.5 0.6 1 2.2 1 0.1 2.7 1 1.1 2.7 1 1.5 3.5 1.5 2 4 2 1.1 2.7 1 1.5 3.5 1.5 2 4 2 3 5.5 2.5 4 6.5 3 5 12.5 6 9.5 15 8 12 18 10 15 21 12<			Units : mm
Dimension for Shat (or Central)/Housing Washers r (min.) or r1 (min.) Corner Radius of Shatt or Housing r (max.) or r1 (max.) 0.05 0.1 0.05 0.05 0.1 0.05 0.08 0.16 0.08 0.1 0.2 0.1 0.15 0.3 0.15 0.2 0.5 0.2 0.3 0.8 0.3 0.6 1.5 0.6 1 2.2 1 1.1 2.7 1 1.5 3.5 1.5 2 4 2 2.1 4.5 2 3 5.5 2.5 4 6.5 3 5 8 4 6 10 5 7.5 12.5 6 9.5 15 8 12 18 10		Permissible Chamfer	Reference
Radial and Axial Direction max. 0.05 0.1 0.05 0.08 0.16 0.08 0.1 0.2 0.1 0.15 0.3 0.15 0.2 0.5 0.2 0.3 0.8 0.3 0.6 1.5 0.6 1 2.2 1 1.1 2.7 1 1.5 3.5 1.5 2 4 2 2.1 4.5 2 3 5.5 2.5 4 6.5 3 5 8 4 6 10 5 7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	Dimension for Shaft (or Central)/Housing Washers	(or Central)/Housing Washers	Shaft or Housing
0.08 0.16 0.08 0.1 0.2 0.1 0.15 0.3 0.15 0.2 0.5 0.2 0.3 0.8 0.3 0.6 1.5 0.6 1 2.2 1 1.1 2.7 1 1.5 3.5 1.5 2 4 2 2.1 4.5 2 3 5.5 2.5 4 6.5 3 5 8 4 6 10 5 7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	7 (mm.) or 7 (mm.)	Radial and Axial Direction	max.
0.1 0.2 0.1 0.15 0.3 0.15 0.2 0.5 0.2 0.3 0.8 0.3 0.6 1.5 0.6 1 2.2 1 1.1 2.7 1 1.5 3.5 1.5 2 4 2 2.1 4.5 2 3 5.5 2.5 4 6.5 3 5 8 4 6 10 5 7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	0.05	0.1	0.05
0.15 0.3 0.15 0.2 0.5 0.2 0.3 0.8 0.3 0.6 1.5 0.6 1 2.2 1 1.1 2.7 1 1.5 3.5 1.5 2 4 2 2.1 4.5 2 3 5.5 2.5 4 6.5 3 5 8 4 6 10 5 7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	0.08	0.16	0.08
0.2 0.5 0.2 0.3 0.8 0.3 0.6 1.5 0.6 1 2.2 1 1.1 2.7 1 1.5 3.5 1.5 2 4 2 2.1 4.5 2 3 5.5 2.5 4 6.5 3 5 8 4 6 10 5 7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	0.1	0.2	0.1
0.3 0.8 0.3 0.6 1.5 0.6 1 2.2 1 1.1 2.7 1 1.5 3.5 1.5 2 4 2 2.1 4.5 2 3 5.5 2.5 4 6.5 3 5 8 4 6 10 5 7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	0.15	0.3	0.15
0.6 1.5 0.6 1 2.2 1 1.1 2.7 1 1.5 3.5 1.5 2 4 2 2.1 4.5 2 3 5.5 2.5 4 6.5 3 5 8 4 6 10 5 7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	0.2	0.5	0.2
1 2.2 1 1.1 2.7 1 1.5 3.5 1.5 2 4 2 2.1 4.5 2 3 5.5 2.5 4 6.5 3 5 8 4 6 10 5 7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	0.3	0.8	0.3
1.1 2.7 1 1.5 3.5 1.5 2 4 2 2.1 4.5 2 3 5.5 2.5 4 6.5 3 5 8 4 6 10 5 7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	0.6	1.5	0.6
1.5 3.5 1.5 2 4 2 2.1 4.5 2 3 5.5 2.5 4 6.5 3 5 8 4 6 10 5 7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	1	2.2	1
2 4 2 2.1 4.5 2 3 5.5 2.5 4 6.5 3 5 8 4 6 10 5 7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	1.1	2.7	1
2.1 4.5 2 3 5.5 2.5 4 6.5 3 5 8 4 6 10 5 7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	1.5	3.5	1.5
3 5.5 2.5 4 6.5 3 5 8 4 6 10 5 7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	2	4	2
4 6.5 3 5 8 4 6 10 5 7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	2.1	4.5	2
5 8 4 6 10 5 7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	3	5.5	2.5
6 10 5 7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	4	6.5	3
7.5 12.5 6 9.5 15 8 12 18 10 15 21 12	5	8	4
9.5 15 8 12 18 10 15 21 12	6	10	5
12 18 10 15 21 12	7.5	12.5	6
15 21 12	9.5	15	8
	12	18	10
19 25 15	15	21	12
	19	25	15

Note (1) Inner rings are classified by d and outer rings by D.

Note (1) For bearings with nominal widths less than 2 mm, the value of r (max.) in the axial direction is the same as that in the radial direction.

Table 7.11 Tolerances for Tapered Bores (Normal Class)

d : Nominal bore diameter

 $\begin{array}{ll} d_1: \text{Theoretical diameter of larger end of tapered bore} \\ \text{Taper 1:12} & d_1 = d + 1/12 B \\ \textbf{Taper 1:30} & d_1 = d + /30 B \\ \textbf{Δ_{dmp}}: \text{Single plane mean bore diameter deviation in theoretical diameter of smaller end of bore} \\ \textbf{Δ_{dmp}}: \text{Single plane mean bore diameter deviation in theoretical diameter of larger end of bore} \\ \textbf{Δ_{dmp}}: \text{Bore diameter variation in a single radial plane} \\ B: \text{Nominal inner ring width} \\ \textbf{α}: \text{Half of taper angle of tapered bore} \end{array}$

Taper 1:12	Taper 1:30
α =2°23´9.4	α =57´17.4
=2.38594°	=0.95484°
=0.041643 rad	=0.016665 rad

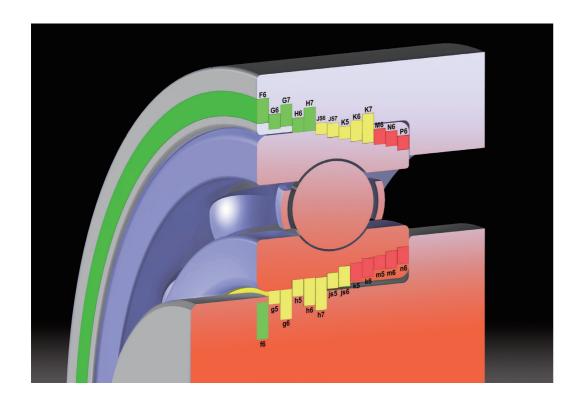
Ta	ber	1	:	12

					Ur	nits : µ m
	ore Diameter d nm)	Δ_{d}	mp	$\Delta_{d_{1}mp}$ -	-⊿ _{<i>d</i>mp}	V _{dp} (¹) (²)
over	incl.	high	low	high	low	max.
18 30 50	30 50 80	+33 +39 +46	0 0 0	+21 +25 +30	0 0 0	13 16 19
80 120 180	120 180 250	+54 +63 +72	0 0 0	+35 +40 +46	0 0 0	22 40 46
250 315 400	315 400 500	+81 +89 +97	0 0 0	+52 +57 +63	0 0 0	52 57 63
500 630 800	630 800 1 000	+110 +125 +140	0 0 0	+70 +80 +90	0 0 0	70
1 000 1 250	1 250 1 600	+165 +195	0 0	+105 +125	0 0	_
Notes	(1) Applicat	ole to all radia	I planes of ta	apered bores.		

(²) Not applicable to all radial planes of tapered bore (²) Not applicable to Diameter Series 7 and 8.

					Ur	iits : μm
(ore Diameter d nm)	Δa	ľmp	$\Delta_{d_{1}mp}$ -	- ⊿ _{dmp}	V_{dp} (¹) (²)
over	incl.	high	low	high	low	max.
80 120 180	120 180 250	+20 +25 +30	0 0 0	+35 +40 +46	0 0 0	22 40 46
250 315 400	315 400 500	+35 +40 +45	0 0 0	+52 +57 +63	0000	52 57 63
500	630	+50	0	+70	0	70
Notes (1) Applicable to all radial planes of tapered bores.						

(2) Not applicable to diameter series 7 and 8.


Remark For a value exceeding 630 mm, please contact NSK.

7.2 Selection of Tolerance Classes

For general applications, Normal Class tolerances are adequate in nearly all cases for satisfactory performance, However, bearings with Class 5, 4, or higher tolerances are more suitable for the following applications in Table 7.12. Example reference applications and appropriate tolerance classes are listed for various bearing requirements and operating conditions.

Table 7.12 Typical Tolerance Classes for Specific Applications (Reference)

Bearing Requirements, Operating Conditions	Example Applications	Tolerance Classes
	VTR Drum Spindles	Р5
	Magnetic Disk Spindles for } Computers	P5, P4, P2
	Machine-Tool Main Spindles	P5, P4, P2
High Running	Rotary Printing Presses	P5
Accuracy	Rotary Tables of Vertical) Presses, etc.	P5, P4
	Roll Necks of Cold Rolling } Mill Backup Rolls	Higher than P4
	Slewing Bearings for Parabolic } Antennas	Higher than P4
	Dental Drills	CLASS 7P, CLASS 5P
	Gyroscopes	CLASS 7P, P4
Federa I Back On and	High Frequency Spindles	CLASS 7P, P4
Extra High Speed	Superchargers	P5, P4
	Centrifugal Separators	P5, P4
	Main Shafts of Jet Engines	Higher than P4
	Gyroscope Gimbals	CLASS 7P, P4
Low Torque and Low	Servomechanisms	CLASS 7P, CLASS 5P
Torque Variation	Potentiometric Controllers	CLASS 7P

8. FITS AND INTERNAL CLEARANCES

8.1 Fit	s A 154
8.1.1	Importance of Proper Fits A 154
8.1.2	Selection of Fit
(1)	Load Conditions and Fit ······ A 154
(2)	Magnitude of Load and Interference
(3)	Interference Variation Caused by Temperature Differences
	Between Bearing and Shaft or Housing A 156
(4)	Effective Interference and Finish of Shaft and Housing A 156
(5)	Fitting Stress and Ring Expansion and Contraction A 156
(6)	Surface Pressure and Maximum Stress on Fitting Surface A 158
(7)	Mounting and Withdrawal Loads A 160
8.1.3	Recommended Fits A 162

8.2 Bea	aring Internal Clearances
8.2.1	Internal Clearances and Their Standards A 168
8.2.2	Selection of Bearing Internal Clearances
(1)	Decrease in Radial Clearance Caused by Fitting
	and Residual Clearance A 174
(2)	Decrease in Radial Internal Clearance Caused by Temperature Differences
	Between Inner and Outer Rings and Effective Clearance A 175
8.3 Teo	chnical Data A 176
8.3.1	Temperature Rise and Dimensional Change A 176
8.3.2	Interference Deviation Due to Temperature Rise
	(Aluminum Housing, Plastic Housing) A 178
8.3.3	Calculating Residual Internal Clearance After Mounting A 180
8.3.4	Effect of Interference Fits on Bearing Raceways (Fit of Inner Ring) A 182
8.3.5	Effect of Interference Fits on Bearing Raceways (Fit of Outer Ring) A 184
8.3.6	Measuring the Internal Clearance of Combined
	Tapered Roller Bearings (Offset Measuring Method) A 186
8.3.7	Internal Clearance Adjustment Method

When Mounting a Tapered Roller Bearing A 188

8. FITS AND INTERNAL CLEARANCES

8.1 Fits

8.1.1 Importance of Proper Fits

In cases where a rolling bearing has its inner ring fitted to the shaft with only slight interference, harmful circumferential slippage may occur between the inner ring and shaft. This slipping of the inner ring, which is called "creep", results in a circumferential displacement of the ring relative to the shaft if the interference fit is not sufficiently tight. When creep occurs, the fitted surfaces become abraded, causing wear and considerable damage to the shaft. Abnormal heating and vibration may also occur due to abrasive metallic particles entering the interior of the bearing. It is important to prevent creep by having sufficient interference to firmly secure the ring that rotates to either the shaft or housing. Creep cannot always be eliminated using only axial tightening through the bearing ring faces. Generally, it is not necessary to provide interference for rings subjected only to stationary loads. Fits are sometimes made without any interference for either the inner or outer ring to accommodate certain operating conditions or to facilitate mounting and dismounting. In these cases, lubrication or other applicable methods should be considered to prevent damage to the fitting surfaces due to creep.

8.1.2 Selection of Fit

(1) Load Conditions and Fit

The proper fit can be selected from Table 8.1 based on the load and operating conditions.

(2) Magnitude of Load and Interference

The interference of the inner ring is slightly reduced by bearing load; therefore, the loss of interference should be estimated using the following equations:

$$\Delta d_{\rm F} = 0.08 \sqrt{\frac{d}{B} F_{\rm r}} \times 10^{-3} \dots ({\rm N})$$
$$\Delta d_{\rm F} = 0.25 \sqrt{\frac{d}{B} F_{\rm r}} \times 10^{-3} \dots \{{\rm kgf}\}$$
(8.1)

where $\Delta d_{\rm F}$: Interference decrease of inner ring (mm)

- d : Bearing bore diameter (mm)
- B: Nominal inner ring width (mm) F_r : Radial load applied on bearing (N), {kgf}

Therefore, the effective interference Δd should be larger than the interference given by Equation (8.1). However, interference often becomes insufficient with heavy loads where the radial load exceeds 20% of the basic static load rating $C_{\rm or}$ under normal operating conditions. In these cases, interference should be estimated using Equation (8.2):

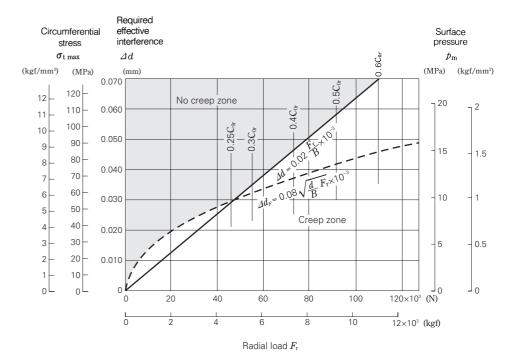
$$\Delta d \ge 0.02 \frac{F_{\rm r}}{B} \times 10^{-3} \dots (N)$$

$$\Delta d \ge 0.2 \frac{F_{\rm r}}{B} \times 10^{-3} \dots (kgf)$$
(8.2)

where Δd : Effective interference (mm) F_r : Radial load applied on bearing (N), {kgf} B: Nominal inner ring width (mm)

Creep experiments conducted by NSK with NU219 bearings showed a linear relation between radial load (load at creep occurrence limit) and required effective interference. It was confirmed that this line agrees well with the straight line of Equation (8.2). When subjected to loads heavier than 0.25 $C_{\rm or}$, the interference given by Equation (8.1) for NU219 bearings becomes insufficient and creep occurs. Generally speaking, the necessary interference for loads heavier than 0.25 $C_{\rm or}$ should be calculated using Equation (8.2). When doing this, verify that the fit does not cause excessive circumferential stress.

Calculation example


For NU219, B = 32 (mm) and assume $F_r = 98\ 100\ N$ $C_{0r} = 183\ 000\ N$

$$\frac{F_{\rm r}}{C_{\rm 0r}} = \frac{98\ 100}{183\ 000} = 0.536 > 0.2$$

Therefore, the required effective interference is calculated using Equation (8.2).

$$\Delta d = 0.02 \times \frac{98\ 100}{32} \times 10^{-3} = 0.061\ (\text{mm})$$

This result agrees well with Fig. 8.1.

Lood Application	Bearing	Operation	Load	Fitt	ting			
Load Application	Inner Ring	Outer Ring	Conditions	Inner Ring	Outer Ring			
	Rotating	Stationary	Rotating Inner Ring Load					
	Stationary	Rotating	Stationary Outer Ring Load	Tight Fit	Loose Fit			
	Stationary	Rotating	Rotating Outer Ring Load	Loose Fit	Tight Fit			
	Rotating	Stationary	- Stationary Inner Ring Load					
Indeterminate load direction due to variation of direction or unbalanced load	Rotating or Stationary	Rotating or Stationary	Direction of Load Indeterminate	Tight Fit	Tight Fit			

Table 8.1 Loading Conditions and Fits

(3) Interference Variation Caused by Temperature Differences Between Bearing and Shaft or Housing

The effective interference decreases due to the increasing bearing temperature during operation. If the temperature difference between the bearing and housing is ΔT (°C), then the temperature difference between the fitted surfaces of the shaft and inner ring is estimated to be about (0.1–0.15) ΔT when the shaft is cooled. The decrease in the interference of the inner ring due to this temperature difference $\Delta d_{\rm T}$ may be calculated using Equation (8.3):

- where $\Delta d_{\rm T}$: Decrease in interference of inner ring due to temperature difference (mm)
 - ΔT : Temperature difference between bearing interior and surrounding parts (°C)
 - α : Coefficient of linear expansion of bearing steel \doteqdot 12.5 \times 10^{^-6} (1/^{\circ}C)
 - *d* : Bearing nominal bore diameter (mm)

In addition, depending on the temperature difference between the outer ring and housing, or difference in their coefficients of linear expansion, interference may increase.

(4) Effective Interference and Finish of Shaft and Housing

Since the roughness of fitted surfaces is reduced during fitting, the effective interference becomes less than the apparent interference. The amount of this interference decrease varies depending on the roughness of the surfaces and may be estimated using the following equations:

where Δd : Effective interference (mm) Δd_a : Apparent interference (mm) d: Bearing nominal bore diameter (mm)

According to Equations (8.4) and (8.5), the effective interference of bearings with a bore diameter of 30 to 150 mm is about 95% of the apparent interference.

(5) Fitting Stress and Ring Expansion and Contraction

When bearings are mounted with interference on a shaft or in a housing, the rings either expand or contract and stress is produced. Excessive interference may damage the bearings; therefore, as a general rule, the maximum interference should be kept under approximately 7/10 000 the shaft diameter. The pressure between fitted surfaces, expansion or contraction of the rings, and circumferential stress may be calculated using the equations in Table 8.2.

Table	8.2	Fit	Conditions	
-------	-----	-----	------------	--

	Inner Ring and Shaft	Outer Ring and Housing
Surface Pressure $p_{ m m}$ (MPa) {kgf/mm²}	Hollow shaft $p_{m} = \frac{4d}{d} \frac{1}{\left[\frac{m_{s}-1}{m_{s}E_{s}} - \frac{m_{i}-1}{m_{i}E_{i}}\right] + 2\left[\frac{k_{0}^{2}}{E_{s}(1-k_{0}^{2})} + \frac{1}{E_{i}(1-k^{2})}\right]}$ Solid shaft $p_{m} = \frac{4d}{d} \frac{1}{\left[\frac{m_{s}-1}{m_{s}E_{s}} - \frac{m_{i}-1}{m_{i}E_{i}}\right] + \frac{2}{E_{i}(1-k^{2})}}$	Housing outside diameter $p_{m} = \frac{dD}{D} \frac{1}{\left[\frac{m_{e}-1}{m_{e}E_{e}} - \frac{m_{h}-1}{m_{b}E_{h}}\right] + 2\left[\frac{h^{2}}{E_{e}(1-h^{2})} + \frac{1}{E_{h}(1-h^{2})}\right]}$
Expansion of Inner Ring Raceway ΔD_i (mm) Contraction of Outer Ring Raceway ΔD_e (mm)	$\Delta D_{i} = 2d \cdot \frac{\dot{p}_{m}}{E_{i}} \cdot \frac{k}{1 - k^{2}}$ $= \Delta d \cdot k \cdot \frac{1 - k_{0}^{2}}{1 - k^{2}k_{0}^{2}} \text{ (hollow shaft)}$ $= \Delta d \cdot k \text{ (solid shaft)}$	$\Delta D_{\epsilon} = 2D \frac{\dot{p}_{m}}{E_{\epsilon}} \frac{h}{1-h^{2}}$ $= \Delta D \cdot h \frac{1-h_{0}^{2}}{1-h^{2}h_{0}^{2}}$
Maximum Stress $\sigma_{ m tmax}$ (MPa) {kgf/mm²}	Maximum circumferential stress at inner ring bore fitting surface. $\sigma_{t \max} = p_{m} \frac{1 + k^{2}}{1 - k^{2}}$	Maximum circumferential stress at outer rin outer surface. $\sigma_{t \max} = p_m \frac{2}{1-h^2}$
Symbols	d : Shaft diameter, inner ring bore d_0 : Hollow shaft bore D_i : Inner ring raceway diameter $k = d/D_i, k_0 = d_0/d$ E_i : Inner ring Young's modulus,208 000 MPa {21 200 kgf/mm²} E_s : Shaft Young's modulus m_i : Inner ring Poisson's number, 3.33 m_s : Shaft Poisson's number	D: Housing bore diameter, outer ring outside diameter D_0 : Housing outside diameter D_e : Outer ring raceway diameter $h = D_e/D, h_0 = D/D_0$ E_e : Outer ring Young's modulus, 208 000 MPa {21 200 kgf/mm ² } E_h : Housing Young's modulus m_e : Outer ring Poisson's number, 3.33 m_h : Housing Poisson's number

(6) Surface Pressure and Maximum Stress on Fitting Surfaces

In order for rolling bearings to achieve their full life expectancy, their fitting must be appropriate. Usually an interference fit is chosen for a rotating inner ring, and a loose fit is used for a fixed outer ring. To select the fit, the magnitude of the load, the temperature differences among the bearing and shaft and housing, material characteristics of the shaft and housing, level of finish, material thickness, and bearing mounting/ dismounting method must all be considered.

If the interference is insufficient for the operating conditions, ring loosening, creep, fretting, heat generation, or other problems may occur. If the interference is excessive, the ring may crack due to circumferential stress. The magnitude of the interference is usually satisfactory if it follows recommendations for the size of the shaft or housing listed in the bearing catalog. To determine surface pressure and stress on the fitting surfaces, calculations can be made assuming a thick-walled cylinder with uniform internal and external pressures; necessary equations for this are summarized in Table 8.2. For convenience in fitting bearing inner rings on solid steel shafts, which are the most common type of shaft, the surface pressure and maximum stress are shown in Figs. 8.3 and 8.4.

Fig. 8.3 shows the surface pressure $p_{\rm m}$ and maximum stress $\sigma_{\rm t}$ $_{\rm max}$ for given combinations of bearing bores for mean interference at various tolerance grades. Fig. 8.4 shows the maximum surface pressure $p_{\rm m}$ and maximum stress $\sigma_{\rm t}$ $_{\rm max}$ when maximum interference occurs.

Fig. 8.4 is convenient for checking if $\sigma_{t max}$ exceeds acceptable limits. The tensile strength of hardened bearing steel is about 1 570 to 1 960 MPa {160 to 200 kgf/mm²}. However, for safety, plan for a maximum fitting stress of 127 MPa {13 kgf/mm²}. For reference, the distributions of circumferential stress σ_t and radial stress σ_r in an inner ring are shown in Fig. 8.2.

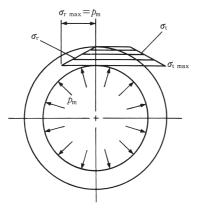


Fig. 8.2 Distribution of Circumferential Stress $\sigma_{\rm t}$ and Radial Stress $\sigma_{\rm r}$

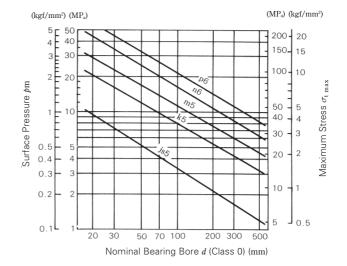


Fig. 8.3 Surface Pressure p_m and Maximum Stress $\sigma_{t max}$ for Mean Interference in Various Tolerance Grades

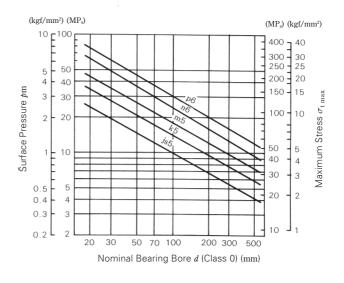


Fig. 8.4 Surface Pressure p_m and Maximum Stress $\sigma_{t max}$ for Maximum Interference in Various Tolerance Grades

NSK

(7) Press-Fit Force and Withdrawal Force

The force needed to mount bearings on shafts or in a housing hole with interference can be obtained using the thick-walled cylinder theory.

The press-fit force (or withdrawal force) depends upon the contact area, surface pressure, and coefficient of friction between the fitting surfaces. The press-fit force (or withdrawal force) *K* needed to

mount inner rings on shafts is given by Equation (8.6).

$$K = \mu p_m \pi d B$$
 (N), {kgf}(8.6)

where μ : Coefficient of friction between fitting surfaces

 μ =0.12 (for press-fitting)

 $\mu = 0.18$ (for withdrawal)

 $p_{\rm m}$: Surface pressure (MPá), {kgf/mm²} For example, inner ring surface pressure can be obtained using Table 8.2.

$$p_{\rm m} = \frac{E}{2} \frac{\Delta d}{d} \frac{(1-k^2)(1-k_0^2)}{1-k^2 k_0^2}$$

- d: Shaft diameter (mm)
- *B*: Bearing width (mm)
- Δd : Effective interference (mm)
- E: Young's modulus of steel (MPa), {kgf/mm²} E=208 000 MPa {21 200 kgf/mm²}
- *k*: Inner ring thickness ratio $k=d/D_i$
- D_i : Inner ring raceway diameter (mm)
- k_0 : Hollow shaft thickness ratio

 $k_0 = d_0/d$

 d_0 : Bore diameter of hollow shaft (mm)

For solid shafts, $d_0=0$, consequently $k_0=0$. The value of k varies depending on bearing type and size, but it usually ranges between k=0.7 and 0.9. Assuming that k=0.8 and the shaft is solid, Equation (8.6) becomes the following:

 $K = 118 \ 000\mu \ \Delta d \ B \ (N) \\ = 12 \ 000\mu \ \Delta d \ B \ \{kgf\} \$ (8.7)

Equation (8.7) is shown graphically in Fig. 8.5. The press-fit and withdrawal forces for outer rings and housings have also been calculated and the results are shown in Fig. 8.6.

The actual press-fit and withdrawal forces can become much higher than the calculated values if the bearing ring and shaft (or housing) are slightly misaligned or load is applied unevenly to the circumference of the bearing ring. Consequently, the values obtained from Figs. 8.5 and 8.6 should be considered only as guides when designing withdrawal tools. Tool strength should be five to six times higher than that indicated by the figures.

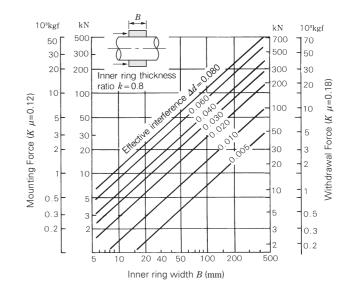


Fig. 8.5 Press-Fit and Withdrawal Forces for Inner Rings

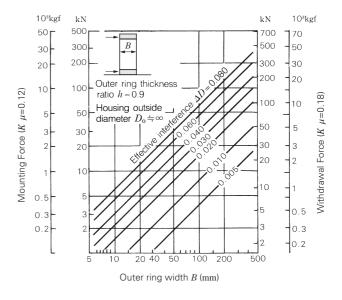


Fig. 8.6 Press-Fit and Withdrawal Forces for Outer Rings

8.1.3 Recommended Fits

As described previously, many factors, such as the characteristics and magnitude of bearing load, temperature differences, and means of bearing mounting and dismounting, must be considered when selecting the proper fit.

If the housing is thin or the bearing is mounted on a hollow shaft, a tighter than usual fit is necessary. A split housing often deforms the bearing into an oval shape; therefore, a split housing should be avoided when a tight fit with the outer ring is required.

The fits of both the inner and outer rings should be tight in applications where the shaft is subjected to considerable vibration.

The recommended fits for some common applications are shown in Tables 8.3 to 8.8. Please consult NSK regarding unusual operating conditions. For the tolerances and surface finish of shafts and housings, please refer to Section 13.1 (Page A270).

Table 8.3 Fits of Radial Bearings (Normal Class, Class 6X, and Class 6) With Shafts

			S	haft Diameter (mm	ı)	T 1		
Load	Load Conditions		Ball Brgs	Cylindrical Roller Brgs, Tapered Roller Brgs	Spherical Roller Brgs	Tolerance of Shaft	Remarks	
			Radial Bearings	With Cylindrical Bo	ores			
Easy axial displacement of inner ring on shaft is necessary.		Wheels on Stationary Axles	All Shaft Diameters –			g6	Use g5 and h5 where accuracy is required. f6 can be used in large	
Outer Ring Load	Easy axial displacement of inner ring on shaft is unnecessary	Tension Pulleys Rope Sheaves		All Shalt Diameters		h6	bearings to allow easy axial movement.	
	Linktlanda	Electrical Home	<18	—	_	js5	Use Class 5 and high-	
	Light Loads or Variable	Appliances Pumps, Blowers, Transport	18 to 100	<40	—	js6(j6)	precision bearings where accuracy is required. Use	
	Loads $(<0.06C_r(1))$	Vehicles, Precision Machinery,	100 to 200	40 to 140	—	k6	h5 for high-precision ball bearings with bore	
	(<0.00Cr())	Machine Tools	_	140 to 200	_	m6	diameters of 18 mm or less.	
			<18	—	_	js5 or js6 (j5 or j6)	k6 and m6 can be used for single-row tapered roller bearings and single- row angular contact ball bearings instead of k5 and m5.	
	Normal Loads (0.06 to 0.13 <i>C</i> _r (¹))		18 to 100	<40	<40	k5 or k6		
Rotating Inner			100 to 140	40 to 100	40 to 65	m5 or m6		
Ring Load or Indeterminate			140 to 200	100 to 140	65 to 100	m6		
Direction of Load			200 to 280	140 to 200	100 to 140	n6		
LUau		Gears,	—	200 to 400	140 to 280	p6		
		Woodworking Machines	—	—	280 to 500	r6		
		indoninoo	_	—	over 500	r7		
		Railway Axleboxes,	—	50 to 140	50 to 100	n6		
	Heavy Loads or Shock Loads	Industrial Vehicles, Traction Motors,	—	140 to 200	100 to 140	p6	A bearing internal	
	$(>0.13C_r(^1))$	Construction Equipment,	—	over 200	140 to 200	r6	clearance greater than CN is necessary.	
		Crushers	_	—	200 to 500	r7		
Axial Loads Only All Types of Bearin Applications		All Types of Bearing Applications	All Shaft Diameters			js6 (j6)	—	
		Radi	al Bearings With	Tapered Bores and	Sleeves			
	as of Loading	General Bearing Applications, Railway Axleboxes				h9/IT5(²)	The deviation of the shaft from its true geometric form, e. g. roundness and	
All Types of Loading		Transmission Shafts, Woodworking Spindles	All Shaft Diameters			h10/IT7(²)	cylindricity should be within the tolerances of IT5 and IT7.	

Notes (¹) C_r represents the basic load rating of the bearing. (²) Refer to Appendix Table 11 on Page E016 for the values of IT standard tolerance grades. (³) Refer to Tables 8.14.1 and 8.14.2 for the recommended fits of shafts used in electric motors for deep groove ball bearings with bore diameters ranging from 10 mm to 160 mm and for cylindrical roller bearings with bore diameters ranging from 24 mm to 200 mm.

Remark This table applies only to solid steel shafts.

Table 8.4 Fits of Thrust Bearings With Shafts

Load Conditions E		Examples	Shaft Diameter (mm)	Tolerance of Shaft	Remarks
Central A	ixial Load Only	Main Shafts of Lathes	All Shaft Diameters	h6 or js6 (j6)	
Combined	Stationary Inner Ring Load	Cone Crushers	All Shaft Diameters	js6 (j6)	
Radial and Axial Loads	Rotating Inner Ring	Paper Pulp	<200	k6	_
(Spherical Thrust Roller Inc	Load or Indeterminate	Refiners, Plastic	200 to 400	m6	
Bearings)	Direction of Load	Extruders	over 400	n6	

Table 8.5 Fits of Radial Bearings (Normal Class, Class 6X, and Class 6) With Housings

	Load Co		Examples	Tolerances for Housing Bores	Axial Displacement of Outer Ring	Remarks
		Heavy Loads on Bearing in Thin-Walled Housing or Heavy Shock Loads	Automotive Wheel Hubs (Roller Bearings) Crane Travelling Wheels	P7		
	Rotating Outer Ring	Normal or Heavy Loads	Automotive Wheel Hubs (Ball Bearings) Vibrating Screens	N7	Impossible	
Solid Housings	Load	Light or Variable Loads	Conveyor Rollers Rope Sheaves Tension Pulleys	M7	IIIpossible	
		Heavy Shock Loads	Traction Motors			
	Indeterminate Direction of Load	Normal or Heavy Loads	Pumps Crankshaft Main Bearings	Examples Housing Bores of Outer Ring Hemarks omotive Wheel Hubs he Travelling Wheels learings indexceens P7 of Outer Ring Hemarks protive Wheel Hubs learings indexceens N7 Impossible — Impossible ission Pulleys N7 Impossible — protive Wheel Hubs ission Pulleys M7 Impossible — title Fearings indum and Large tors(¹) K7 Generally Impossible If axial displacement the outer ring is not required. mps nkshaft Main rrings K7 Possible Axial displacement to outer ring is not required. mmer Blocks H8 Easily possible — mmer Blocks H8 Easily possible — h Speed Centrifugal npessor Free rings JS6 (J6) Possible — h Speed Centrifugal rings for Machine K6 Generally Impossible For heavy loads, an interference fit tig than K may be used. h Main Spindle M6 or N6 Impossible For heavy loads, an interference fit to tolerances should be used for fitting.		If axial displacement of the outer ring is not required.
	Loud	Normal or Light Loads	Medium and Large Motors(¹)			
Solid or Split		Any Kind of Load	General Bearing Applications, Railway Axleboxes	H7		
Housings		Normal or Light Loads	Plummer Blocks	H8		_
	Rotating Inner Ring Load	High Temperature Rise of Inner Ring Through Shaft	Paper Dryers	G7		
	LUau	Accurate Running Required Under	Grinding Spindle Rear Ball Bearings High Speed Centrifugal Compessor Free Bearings	JS6 (J6)	Possible	_
Solid Housing	Indeterminate Direction of Load	Normal or Light Loads	Grinding Spindle Front Ball Bearings High Speed Centrifugal Compressor Fixed Bearings	Kő		an interference fit tighter than K may be used. When high accuracy is
	Rotating	Accurate Running and High Rigidity Required Under Variable Loads	Cylindrical Roller Bearings for Machine Tool Main Spindle	M6 or N6	Impossible	tolerances should be
	Inner Ring Load	Minimal noise is required.	Electrical Home Appliances	H6		_

Note (1) Refer to Tables 8.14.1 and 8.14.2 for the recommended fits of housing bores of deep groove ball bearings and cylindrical roller bearings for electric motors.

Remarks 1. This table is applicable to cast-iron and steel housings. For housings made of light alloys, the interference should be tighter than listed in this table.

2. Refer to the introductory section of the bearing tables for special fits, such as those for drawn cup needle roller bearings.

Table 8.6 Fits of Thrust Bearings With Housings

	Load Conditions	Bearing Types	Tolerances for Housing Bores	Remarks		
		Thrust Ball	Clearance over 0.25mm	For General Applications		
		Bearings	H8	When precision is required		
	Axial Loads Only	Spherical Thrust Roller Bearings Steep Angle Tapered Roller Bearings	Outer ring has radial clearance.	When radial loads are sustained by other bearings		
Combined Radial	Stationary Outer Ring Loads	Spherical Thrust	H7 or JS7 (J7)	_		
and Axial	Rotating Outer Ring Loads or	Roller Bearings	K7	Normal Loads		
Loads	Indeterminate Direction of Load		M7	Relatively Heavy Radial Loads		

(2) Poprings of Provision Classes 2 and 0 (1)

Table 8.7 Fits of Inch Series Tapered Roller Bearings With Shafts

(1)	Bearings of Pi	ecision Clas	sses 4 and 2							Units : μm
0no	rating Conditions		Nominal Bore	e Diameters d		Bore Di Tolera ⊿	ances		iameter ances	Remarks
Ohe	rating conditions	0V	er	inc					nemarks	
		(mm)	1/25.4	(mm)	1/25.4	high	low	high	low	
		-	-	76.200	3.0000	+13	0	+ 38	+ 25	
5	Normal Loads	76.200	3.0000	304.800	12.0000	+25	0	+ 64	+ 38	For bearings with $d \leq$ 152.4 mm,
s		304.800	12.0000	609.600	24.0000	+51	0	+127	+ 76	clearance is usually larger than CN
g l		609.600	24.0000	914.400	36.0000	+76	0	+190	+114	
Rotating Inner Ring Loads	Heavy Loads	-	_	76.200	3.0000	+13	0	+ 64	+ 38	In general, bearings with a clear-
Sing	Shock Loads	76.200	3.0000	304.800	12.0000	+25	0	*		ance larger than CN are used.
	High Speeds	304.800	12.0000	609.600	24.0000	+51	0	*		⅔ indicates that the average
	ingii opeede	609.600	24.0000	914.400	36.0000	+76	0	+381	+305	interference is about 0.0005 d.
		-	_	76.200	3.0000	+13	0	+ 13	0	The inner ring cannot be displaced axially
-		76.200	3.0000	304.800	12.0000	+25	0	+ 25	0	When heavy or shock loads exist, the
s ute		304.800	12.0000	609.600	24.0000	+51	0	+ 51	0	figures above (rotating inner ring loads,
g O	Normal Loads	609.600	24.0000	914.400	36.0000	+76	0	+ 76	0	heavy or shock loads) apply.
Rotating Outer Ring Loads	Without Shocks	-	-	76.200	3.0000	+13	0	0	- 13	
Ring		76.200	3.0000	304.800	12.0000	+25	0	0	- 25	The inner ring can be displaced
		304.800	12.0000	609.600	24.0000	+51	0	0	- 51	axially.
		609.600	24.0000	914.400	36.0000	+76	0	0	- 76	

0.2.2	rating Conditions	N	ominal Outsi	le Diameters <i>L</i>)	Outside I Tolera ⊿		Dian	ng Bore neter ances	Remarks	
Obe	rating Conditions	016	er	inc	sl.					nelliaiks	
		(mm) 1/25.4		(mm) 1/25.4		high	low	high low			
			-	76.200	3.0000	+25	0	+ 76	+ 51		
	Used either	76.200	3.0000	127.000	5.0000	+25	0	+ 76	+ 51	The outer ring can be easily	
	on free-end or	127.000	5.0000	304.800	12.0000	+25	0	+ 76	+ 51	displaced axially.	
ds	fixed-end	304.800	12.0000	609.600	24.0000	+51	0	+152	+102		
-oa		609.600	24.0000	914.400	36.0000	+76	0	+229	+152		
l Gu			-	76.200	3.0000	+25	0	+ 25	0		
ï	P	76.200	3.0000	127.000	5.0000	+25	0	+ 25	0	The outer ring can be displace	
ner		127.000	5.0000	304.800	12.0000	+25	0	+ 51	0	axially.	
n d	adjusted axially.		12.0000	609.600	24.0000	+51	0	+ 76	+ 25		
Rotating Inner Ring Loads		609.600	24.0000	914.400	36.0000	+76	0	+127	+ 51		
tota	The outer ring		-	76.200	3.0000	+25	0	- 13	- 38		
œ	position cannot	76.200	3.0000	127.000	5.0000	+25	0	- 25	- 51	Generally, the outer ring is fixe	
	be adjusted	127.000	5.0000	304.800	12.0000	+25	0	- 25	- 51	axially.	
	axially.	304.800	12.0000	609.600	24.0000	+51	0	- 25	- 76		
	-	609.600	24.0000	914.400	36.0000	+76	0	- 25	-102		
Rotating Outer Ring Loads	Normal Loads		-	76.200	3.0000	+25	0	- 13	- 38		
ads	The outer ring	76.200	3.0000	127.000	5.0000	+25	0	- 25	- 51		
L	position cannot	127.000	5.0000	304.800	12.0000	+25	0	- 25	- 51	The outer ring is fixed axially.	
ota	be adjusted axially.	304.800	12.0000	609.600	24.0000	+51	0	- 25	- 76		
ссс	anialiy.	609.600	24.0000	914.400	36.0000	+76	0	- 25	-102		

Table 8.8 Fits of Inch Series Tapered Roller Bearings With Housings

(2) Bearings of Precision Classes 3 and 0 (1)

Units : µm

Remarks

Housing Bore

(2)	Bearings of Pl	recision cias	sses 3 and 0	(1)						Units : µm
One	rating Conditions		Nominal Bore	e Diameters d		Tolera	iameter ances _{ds}	Shaft D Tolera		Remarks
ohe	rating conditions		/er	in	cl.					nemarka
		(mm)	1/25.4	(mm)	1/25.4	high	low	high	low	
_	Precision	-	_	76.200	3.0000	+13	0	+ 30	+18	
-		76.200	3.0000	304.800	12.0000	+13	0	+ 30	+18	
s	Main Spindles	304.800	12.0000	609.600	24.0000	+25	0	+ 64	+38	
g Ir		609.600	24.0000	914.400	36.0000	+38	0	+102	+64	
Rotating Inner Ring Loads		-	_	76.200 3.0000		+13	0	—		
Sot	Heavy Loads Shock Loads	76.200	3.0000	304.800	12.0000	+13	0	_	_	A minimum interference of about
	High Speeds	304.800	12.0000	609.600	24.0000	+25	0	-	-	0.00025 <i>d</i> is used.
		609.600	24.0000	914.400	36.0000	+38	0	_	-	
Rotating Outer Ring Loads	Precision	-	_	76.200	3.0000	+13	0	+ 30	+18	
g Oi	Machine-Tool	76.200	3.0000	304.800	12.0000	+13	0	+ 30	+18	
ig L	Main Spindles	304.800	12.0000	609.600	24.0000	+25	0	+ 64	+38	
Bin		609.600	24.0000	914.400	36.0000	+38	0	+102	+64	
			. 1							

Note (1) For bearings with d greater than 304.8 mm, Class 0 does not exist.

Outside Diameter Tolerances Nominal Outside Diameters DDiameter $\Delta D_{\rm S}$ Tolerances Operating Conditions over incl. 1/25.4 (mm) 1/25.4 (mm) high low high low 152.400 6.0000 +13 0 +38 +25 _ Used on free-152.400 6.0000 304.800 12.0000 +38 +25 The outer ring can be easily +13 0 end 304.800 12.0000 609.600 24.0000 +25 0 +64 +38 displaced axially. 609.600 24.0000 914.400 36.0000 +38 0 +89 +51 SUC 152.400 6.0000 +13 0 +25 +13 _ Ring Loa Used on fixed-152.400 6.0000 304.800 12.0000 +13 0 +25 +13 The outer ring can be displaced end 304.800 12.0000 609.600 24.0000 +25 0 +51 +25 axially. 609.600 24.0000 914.400 36.0000 +38 0 +76 +38 Inner Rotating I

Inne	The outer ring	-	_	152.400	6.0000	+13	0	+13	0	
l DL	The outer ring position can be	152.400	6.0000	304.800	12.0000	+13	0	+25	0	Generally, the outer ring is fixed
atir	adjusted axially.	304.800	12.0000	609.600	24.0000	+25	0	+25	0	axially.
Rotating	adjuotod axialiy.	609.600	24.0000	914.400	36.0000	+38	0	+38	0	
	The outer ring	-	_	152.400	6.0000	+13	0	0	-13	
	position cannot	152.400	6.0000	304.800	12.0000	+13	0	0	-25	The outer ring is fixed axially.
	be adjusted	304.800	12.0000	609.600	24.0000	+25	0	0	-25	The outer fing is liked axially.
	axially.	609.600	24.0000	914.400	36.0000	+38	0	0	-38	
Rotating Outer Ring Loads	Normal Loads	-	_	76.200	3.0000	+13	0	-13	-25	
ou sp	The outer ring	76.200	3.0000	152.400	6.0000	+13	0	-13	-25	
Loa	position cannot	152.400	6.0000	304.800	12.0000	+13	0	-13	-38	The outer ring is fixed axially.
ng	be adjusted	304.800	12.0000	609.600	24.0000	+25	0	-13	-38	
<u> </u>	axially.	609.600	24.0000	914.400	36.0000	+38	0	-13	-51	

Note $(^1)$ For bearings with D greater than 304.8 mm, Class 0 does not exist.

8.2 Bearing Internal Clearances

8.2.1 Internal Clearances and Their Standards

The internal clearance of rolling bearings in operation greatly influences bearing performance including fatigue life, vibration, noise, heat generation, etc. Consequently, the selection of proper internal clearance is one of the most important tasks when choosing a bearing after the type and size have been determined.

This bearing internal clearance refers to the combined clearances between the inner/outer rings and rolling elements. The radial and axial internal clearances are defined as the total amount that one ring can be displaced relative to the other in the radial and axial directions respectively (Fig. 8.7).

Radial internal Clearance	Axial internal Clearance

Fig. 8.7 Bearing Internal Clearance

To obtain accurate measurements, the clearance is generally measured by applying a specified measuring load on the bearing. This "measured clearance" is always slightly larger than the theoretical internal clearance ("geometrical clearance" for radial bearings) by the amount of elastic deformation caused by the measuring load.

Therefore, the theoretical internal clearance may be obtained by correcting the measured clearance by the amount of elastic deformation. However, in the case of roller bearings, this elastic deformation is negligibly small.

Usually the clearance before mounting is specified by the theoretical internal clearance.

In Table 8.9, reference table and page numbers are listed by bearing types.

Table 8.9 Index for Radial Internal Clearances by Bearing Type

В	earing Type	Table Number	Page Number				
Deep Groove Ba	all Bearings	8.10 A169					
Extra Small and	Miniature Ball Bearings	8.11	A169				
Magneto Bearin	8.12	A169					
Self-Aligning Ba	III Bearings	8.13	A170				
Deep Groove Ball Bearings	For Matoria	8.14.1	Number A169 A169 A169 A169				
Cylindrical Roller Bearings	For Motors	Number Number 8.10 all Bearings 8.11 8.12 8.13 8.14.1 8.14.2 rical Bores rical Bores all Bores 8.15 d Bores 8.16 Tapered 8.18	A170				
Cylindrical Roller Bearings	With Cylindrical Bores With Cylindrical Bores (Matched) With Tapered Bores (Matched)	8.15	A171				
Spherical Roller Bearings	With Cylindrical Bores With Tapered Bores	8.16					
Double-Row an Roller Bearings	d Combined Tapered	8.17	A173				
Combined Angu Bearings (1)	Ilar Contact Ball	8.18	A174				
Four-Point-Cont	tact Ball Bearings (1)	8.19	A174				

Table 8.10 Radial Internal Clearances in **Deep Groove Ball Bearings**

Remarks To obtain the measured values, use the clearance correction

bearings near the maximum clearance range.

Nominal Bore

Diameter

d (mm)

incl.

over

10 only

C2

min. max

33 28

10 100

10 110

20 130

values in the table below.

70 190 170 300 280 420 390 570

80 210 190 330 310 470 440 630

90 230 210 360 340 520 490 690

110 260 240 400 380 570 540 760

20 140 120 290 270 450 430 630 600 840

For the C2 clearance class, the smaller value should be used for bearings with minimum clearance and the larger value for

Table 8.11 Radial Internal Clearances in Extra **Small and Miniature Ball Bearings**

				5	Uni	ts : μn	n				-		l	Jnits : µ	m
		Clear	ance			I		Clear- ance Symbol	MC1	MC2	MC3	м	24	MC5	MC6
С	N	С	3	C	4	C	5	5	min. max.	min. max.	min. ma	x. min.	max.	min. max.	min. max.
min.	max.	min.	max.	min.	max.	min.	max.	Clear- ance	0 5	38	5 10	5 8	13	13 20	20 28
2 3 5 5 6	13 18 20 20 20	8 11 13 13 13	23 25 28 28 33	14 18 20 23 28	29 33 36 41 46	20 25 28 30 40	37 45 48 53 64	Remark		The sta To obta correct below.	in the	measi	ured	value,	add
6	23	18	36	30	51	45	73						ι	Jnits : µ	m
8 10 12	28 30 36	23 25 30	43 51 58	38 46 53	61 71 84	55 65 75	90 105 120		Clearan Symbo	ol MCI	MC2	MC3	МС	4 MC	5 MC6
15 18	41 48	36 41	66 81	61 71	97 114	90 105	140 160		Clearan Correcti Value	on 1	1	1	1	2	2
18	53	46	91	81	130	120	180			ne meas For mini					VS:
20 25 25	61 71 85	53 63 75	102 117 140	91 107 125	147 163 195	135 150 175	200 230 265			For extra		ball b 4.4	earii N {(.45kg	f}
30 35 40	95 105 115	85 90 100	160 170 190	145 155 175	225 245 270	205 225 245	300 340 370			For clas Table 1				refer t	0
45 55 60	125 145 170	110 130 150	210 240 270	195 225 250	300 340 380	275 315 350	410 460 510	Tabl	le 8.12	2 Radi Mag	al Inte			arance	s in

Magneto Bearings

			Units :	μm
Nomina Diam d (m	eter	Bearing Series	Clea	rance
over	incl.		min.	max.
2.5	30	EN	10	50
2.5	30	E	30	60

	Units : µm														
Nominal Bor Dia. d (mm)		Meas Lo		Radial Clearance Correction Amount											
over ir	ncl.	(N)	au {kgf}	C2	CN	C3	C4	C5							
10 (incl)	18	24.5	{2.5}	3 to 4	4	4	4	4							
18	50	49	{5}	4 to 5	5	6	6	6							
50 2	80	147	{15}	6 to 8	8	9	9	9							

Remark For values exceeding 280 mm, please contact NSK.

Table 8.13 Radial Internal Clearances in Self-Aligning Ball Bearings

									Sell-A	ligni	пу ва	пве	aring	s					Uni	ts : µr	n
Nomina			Cl	earanc	e in Be	arings	With C	Sylindri	ical Bo	res		Clearance in Bearings With Tapered Bores									
Dia. d	(mm)	C	22	C	N	(23	0	24	0	25	(22	C	N	C	23	(24	0	25
over	incl.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
2.5 6 10	6 10 14	1 2 2	8 9 10	5 6 6	15 17 19	10 12 13	20 25 26	15 19 21	25 33 35	21 27 30	33 42 48										
14 18 24	18 24 30	3 4 5	12 14 16	8 10 11	21 23 24	15 17 19	28 30 35	23 25 29	37 39 46	32 34 40	50 52 58	 7 9	 17 20	13 15	 26 28	 20 23	 33 39	 28 33	42 50	 37 44	55 62
30 40 50	40 50 65	6 6 7	18 19 21	13 14 16	29 31 36	23 25 30	40 44 50	34 37 45	53 57 69	46 50 62	66 71 88	12 14 18	24 27 32	19 22 27	35 39 47	29 33 41	46 52 61	40 45 56	59 65 80	52 58 73	72 79 99
65 80 100	80 100 120	8 9 10	24 27 31	18 22 25	40 48 56	35 42 50	60 70 83	54 64 75	83 96 114	76 89 105	108 124 145	23 29 35	39 47 56	35 42 50	57 68 81	50 62 75	75 90 108	69 84 100	98 116 139	91 109 130	123 144 170
120 140	140 160	10 15	38 44	30 35	68 80	60 70	100 120	90 110	135 161	125 150	175 210	40 45	68 74	60 65	98 110	90 100	130 150	120 140	165 191	155 180	205 240

Table 8.14 Radial Internal Clearances in Bearings for Electric Motors

Table 8.14. 1 Deep Groove Ball Bearings for Electric Motors

Table 8.14.2 Cylindrical Roller Bearings for Electric Motors Units : μm

				Units	S∶µm
Nominal B	lore	Clear	rance	Ren	narks
Dia. d (m	m)	C	М	Recomm	nended fit
over	incl.	min.	max.	Shaft	Housing Bore
10 (incl)	18	4	11	js5 (j5)	
18	30	5	12		
30	50	9	17		H6, H7(1)
50	80	12	22	k5	or JS6, JS7
80	100	18	30		(J6, J7)(²)
100	120	18	30	m5	
120	160	24	38	IIIJ	

- Notes (1) Applicable to outer rings that require movement in the axial direction.
 - (2) Applicable to outer rings that do not require movement in the axial direction.
- **Remark** The radial internal clearance increase caused by the measuring load is equal to the correction amount for CN clearance listed in the remarks under Table 8.10.

Nomina	al Bore		Clear	ance		F	Remarks
Dia. d	(mm)	Interchan	geable CT	Non-Intercha	angeable CM	Recor	nmended Fit
over	incl.	min.	max.	min.	max.	Shaft	Housing Bore
24	40	15	35	15	30	k5	
40	50	20	40	20	35		
50	65	25	45	25	40		
65	80	30	50	30	45		
80	100	35	60	35	55	m5	JS6, JS7 (J6, J7)(1)
100	120	35	65	35	60		or
120	140	40	70	40	65		K6, K7(²)
140	160	50	85	50	80		
160	180	60	95	60	90		
180	200	65	105	65	100	n6	

Notes (1) Applicable to outer rings that require movement in the axial direction. (2) Applicable to outer rings that do not require

movement in the axial direction.

Table 8.15 Radial Internal Clearances in Cylindrical Roller Bearings and Solid Needle Roller Bearings

									Kolle	r веа	rings	and	1 50		veedi	e Rol	Ier B	earin	gs		Uni	ts : μn	n
	ninal Dia.						in Bea Irical B								Cleara				angeat I Bore	ole Bea s	rings		
<i>d</i> (r	nm)	C	22	C	N	C	3	0	24	C	5	C	C1	C	C2	CC	(1)	C	C3	C	C4	C	C5
over	incl.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
 10 24	10 24 30	0 0 0	25 25 25	20 20 20	45 45 45	35 35 35	60 60 60	50 50 50	75 75 75	65 70	90 95	5 5	15 15	10 10	20 25	20 25	30 35	35 40	45 50	45 50	55 60	65 70	 75 80
30	40	5	30	25	50	45	70	60	85	80	105	5	15	12	25	25	40	45	55	55	70	80	95
40	50	5	35	30	60	50	80	70	100	95	125	5	18	15	30	30	45	50	65	65	80	95	110
50	65	10	40	40	70	60	90	80	110	110	140	5	20	15	35	35	50	55	75	75	90	110	130
65	80	10	45	40	75	65	100	90	125	130	165	10	25	20	40	40	60	70	90	90	110	130	150
80	100	15	50	50	85	75	110	105	140	155	190	10	30	25	45	45	70	80	105	105	125	155	180
100	120	15	55	50	90	85	125	125	165	180	220	10	30	25	50	50	80	95	120	120	145	180	205
120	140	15	60	60	105	100	145	145	190	200	245	10	35	30	60	60	90	105	135	135	160	200	230
140	160	20	70	70	120	115	165	165	215	225	275	10	35	35	65	65	100	115	150	150	180	225	260
160	180	25	75	75	125	120	170	170	220	250	300	10	40	35	75	75	110	125	165	165	200	250	285
180		35	90	90	145	140	195	195	250	275	330	15	45	40	80	80	120	140	180	180	220	275	315
200		45	105	105	165	160	220	220	280	305	365	15	50	45	90	90	135	155	200	200	240	305	350
225		45	110	110	175	170	235	235	300	330	395	15	50	50	100	100	150	170	215	215	265	330	380
250		55	125	125	195	190	260	260	330	370	440	20	55	55	110	110	165	185	240	240	295	370	420
280		55	130	130	205	200	275	275	350	410	485	20	60	60	120	120	180	205	265	265	325	410	470
315		65	145	145	225	225	305	305	385	455	535	20	65	65	135	135	200	225	295	295	360	455	520
400	400	100	190	190	280	280	370	370	460	510	600	25	75	75	150	150	225	255	330	330	405	510	585
	450	110	210	210	310	310	410	410	510	565	665	25	85	85	170	170	255	285	370	370	455	565	650
	500	110	220	220	330	330	440	440	550	625	735	25	95	95	190	190	285	315	410	410	505	625	720

Note (1) CC denotes normal clearance for noninterchangeable cylindrical roller bearings and solid needle roller bearings.

																Units : µ	ım
Non Bore	ninal					Cleara	nces in N	Ioninter	changeal	ole Beari	ngs with	n Tapereo	d Bores				
		CC	9 (1)	C	C0	C	C1	C	C2	CC	C (2)	C	C3	C	C4	C	C5
over	incl.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
10 24 30	24 30 40	5 5 5	10 10 12	88	15 15	10 10 12	20 25 25	20 25 25	30 35 40	35 40 45	45 50 55	45 50 55	55 60 70	55 60 70	65 70 80	75 80 95	85 95 110
40 50 65	50 65 80	5 5 10	15 15 20	10 10 15	20 20 30	15 15 20	30 35 40	30 35 40	45 50 60	50 55 70	65 75 90	65 75 90	80 90 110	80 90 110	95 110 130	110 130 150	125 150 170
80 100 120	100 120 140	10 10 15	25 25 30	20 20 25	35 35 40	25 25 30	45 50 60	45 50 60	70 80 90	80 95 105	105 120 135	105 120 135	125 145 160	125 145 160	150 170 190	180 205 230	205 230 260
140 160 180	160 180 200	15 15 20	35 35 40	30 30 30	50 50 50	35 35 40	65 75 80	65 75 80	100 110 120	115 125 140	150 165 180	150 165 180	180 200 220	180 200 220	215 240 260	260 285 315	295 320 355
200 225 250	225 250 280	20 25 25	45 50 55	35 40 40	60 65 70	45 50 55	90 100 110	90 100 110	135 150 165	155 170 185	200 215 240	200 215 240	240 265 295	240 265 295	285 315 350	350 380 420	395 430 475
280 315 355	315 355 400	30 30 35	60 65 75			60 65 75	120 135 150	120 135 150	180 200 225	205 225 255	265 295 330	265 295 330	325 360 405	325 360 405	385 430 480	470 520 585	530 585 660
400 450	450 500	40 45	85 95		_	85 95	170 190	170 190	255 285	285 315	370 410	370 410	455 505	455 505	540 600	650 720	735 815

Notes (1) Clearance CC9 is applicable to cylindrical roller bearings with tapered bores in ISO Tolerance Classes 5 and 4. (2) CC denotes normal clearance for noninterchangeable cylindrical roller bearings and solid needle roller bearings.

FITS AND INTERNAL CLEARANCES

Table 8.16	Radial Internal Clearances in
	Spherical Roller Bearings

									S	pheric	al Ro	ler E	Beari	ngs					U	nits : µ	m
	minal re Dia.		(Cleara	nce in	Beari	ngs Wi	th Cylin	drical B	ores				Clea	arance i	n Beari	ngs Wit	th Taper	red Bore	es	
	(mm)	C	2	C	N		C3	C	4	0	5	0	2	0	CN	C	23	C	24	C	25
over	incl.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
24	40	15	25	25	40	40	55	55	75	75	95	20	30	30	40	40	55	55	75	75	95
30		15	30	30	45	45	60	60	80	80	100	25	35	35	50	50	65	65	85	85	105
40		20	35	35	55	55	75	75	100	100	125	30	45	45	60	60	80	80	100	100	130
50	80	20	40	40	65	65	90	90	120	120	150	40	55	55	75	75	95	95	120	120	160
65		30	50	50	80	80	110	110	145	145	180	50	70	70	95	95	120	120	150	150	200
80		35	60	60	100	100	135	135	180	180	225	55	80	80	110	110	140	140	180	180	230
100	140	40	75	75	120	120	160	160	210	210	260	65	100	100	135	135	170	170	220	220	280
120		50	95	95	145	145	190	190	240	240	300	80	120	120	160	160	200	200	260	260	330
140		60	110	110	170	170	220	220	280	280	350	90	130	130	180	180	230	230	300	300	380
160	200	65	120	120	180	180	240	240	310	310	390	100	140	140	200	200	260	260	340	340	430
180		70	130	130	200	200	260	260	340	340	430	110	160	160	220	220	290	290	370	370	470
200		80	140	140	220	220	290	290	380	380	470	120	180	180	250	250	320	320	410	410	520
225	280	90	150	150	240	240	320	320	420	420	520	140	200	200	270	270	350	350	450	450	570
250		100	170	170	260	260	350	350	460	460	570	150	220	220	300	300	390	390	490	490	620
280		110	190	190	280	280	370	370	500	500	630	170	240	240	330	330	430	430	540	540	680
315	400	120	200	200	310	310	410	410	550	550	690	190	270	270	360	360	470	470	590	590	740
355		130	220	220	340	340	450	450	600	600	750	210	300	300	400	400	520	520	650	650	820
400		140	240	240	370	370	500	500	660	660	820	230	330	330	440	440	570	570	720	720	910
450	560	140	260	260	410	410	550	550	720	720	900	260	370	370	490	490	630	630	790	790	1 000
500		150	280	280	440	440	600	600	780	780	1 000	290	410	410	540	540	680	680	870	870	1 100
560		170	310	310	480	480	650	650	850	850	1 100	320	460	460	600	600	760	760	980	980	1 230
630 710 800	800	190 210 230	350 390 430	350 390 430	530 580 650	530 580 650	700 770 860	700 770 860	920 1 010 1 120	1 010	1 190 1 300 1 440	350 390 440	510 570 640	510 570 640	670 750 840	670 750 840	850 960 1 070	850 960 1 070	1 090 1 220 1 370	1 090 1 220 1 370	1 360 1 500 1 690
900 1 000 1 120 1 250	1 120 1 250	260 290 320 350	480 530 580 640	480 530 580 640	710 780 860 950	710 780 860 950	930 1 020 1 120 1 240	930 1 020 1 120 1 240	1 220 1 330 1 460 1 620	1 220 	1 570 	490 530 570 620	710 770 830 910	710 770 830 910	930 1 030 1 120 1 230	930 1 030 1 120 1 230	1 190 1 300 1 420 1 560	1 190 1 300 1 420 1 560	1 520 1 670 1 830 2 000	1 520 	1 860

Table 8.17 Radial Internal Clearances in Double-Row and Combined Tapered Roller Bearings

				C	ombine	d Tapero	ed Rolle	r Bearin	gs			Unit	s:μm
	ndrical						CI	earance					
Bore Tape	ered Bore	C	21	С	22	C	Ν	C	3	0	24	С	5
Nominal Bo Dia. d (mr		-	_	C	21	C	2	C	Ν	0	23	С	4
over	incl.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
	18	0	10	10	20	20	30	35	45	50	60	65	75
18	24	0	10	10	20	20	30	35	45	50	60	65	75
24	30	0	10	10	20	20	30	40	50	50	60	70	80
30	40	0	12	12	25	25	40	45	60	60	75	80	95
40	50	0	15	15	30	30	45	50	65	65	80	95	110
50	65	0	15	15	35	35	55	60	80	80	100	110	130
65	80	0	20	20	40	40	60	70	90	90	110	130	150
80	100	0	25	25	50	50	75	80	105	105	130	155	180
100	120	5	30	30	55	55	80	90	115	120	145	180	210
120	140	5	35	35	65	65	95	100	130	135	165	200	230
140	160	10	40	40	70	70	100	110	140	150	180	220	260
160	180	10	45	45	80	80	115	125	160	165	200	250	290
180	200	10	50	50	90	90	130	140	180	180	220	280	320
200	225	20	60	60	100	100	140	150	190	200	240	300	340
225	250	20	65	65	110	110	155	165	210	220	270	330	380
250	280	20	70	70	120	120	170	180	230	240	290	370	420
280	315	30	80	80	130	130	180	190	240	260	310	410	460
315	355	30	80	80	130	140	190	210	260	290	350	450	510
355	400	40	90	90	140	150	200	220	280	330	390	510	570
400	450	45	95	95	145	170	220	250	310	370	430	560	620
450	500	50	100	100	150	190	240	280	340	410	470	620	680
500	560	60	110	110	160	210	260	310	380	450	520	700	770
560	630	70	120	120	170	230	290	350	420	500	570	780	850
630	710	80	130	130	180	260	310	390	470	560	640	870	950
710	800	90	140	150	200	290	340	430	510	630	710	980	1 060
800	900	100	150	160	210	320	370	480	570	700	790	1 100	1 200
900	1 000	120	170	180	230	360	410	540	630	780	870	1 200	1 300
1 000 1 120 1 250	1 120 1 250 1 400	130 150 170	190 210 240	200 220 250	260 280 320	400 450 500	460 510 570	600 670 750	700 770 870				

Remark Axial internal clearance $\Delta_a = \Delta_r \cot \alpha = \frac{1.5}{e} \Delta_r$

where Δ_r : Radial internal clearance α : Contact angle e: Constant (listed in bearing tables)

 Table 8.18
 Axial Internal Clearances in Combined Angular Contact Ball Bearings (Measured Clearance)

_													UIIIIS	. μm		
	Nomina	l Bore	Axial Internal Clearance													
	Diame	eter.			Contact /	Angle 30°					Contact A	Angle 40°				
	d (m	m) -	С	N	C	3	0	24	C	N	C	3	0	24		
C	over	incl.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.		
		10	9	29	29	49	49	69	6	26	26	46	46	66		
	10	18	10	30	30	50	50	70	7	27	27	47	47	67		
	18	24	19	39	39	59	59	79	13	33	33	53	53	73		
	24	30	20	40	40	60	60	80	14	34	34	54	54	74		
	30	40	26	46	46	66	66	86	19	39	39	59	59	79		
	40	50	29	49	49	69	69	89	21	41	41	61	61	81		
	50	65	35	60	60	85	85	110	25	50	50	75	75	100		
	65	80	38	63	63	88	88	115	27	52	52	77	77	100		
	80	100	49	74	74	99	99	125	35	60	60	85	85	110		
1	100	120	72	97	97	120	120	145	52	77	77	100	100	125		
	120	140	85	115	115	145	145	175	63	93	93	125	125	155		
	140	160	90	120	120	150	150	180	66	96	96	125	125	155		
	160	180	95	125	125	155	155	185	68	98	98	130	130	160		
	180	200	110	140	140	170	170	200	80	110	110	140	140	170		

Remark This table is applicable to bearings with Normal and Class 6 tolerances. Please consult NSK regarding the internal axial clearances of bearings with Class 5 tolerance or better and contact angles of 15° and 25°.

Table 8.19 Axial Internal Clearance in Four-Point-Contact Ball Bearings (Measured Clearances)

						Units	:µm
	al Bore		Ax	ial Intern	al Clearar	nce	
Dia. d	(mm)	С	N	C	3	0	24
over	incl.	min.	max.	min.	max.	min.	max.
10	18	45	85	75	125	115	165
18	40	56	106	96	146	136	186
40	60	76	126	116	166	156	206
60	80	86	136	126	176	166	226
80	100	96	156	136	196	186	246
100	140	116	176	156	216	206	266
140	180	136	196	176	246	226	296
180	220	156	226	206	276	256	326
220	260	175	245	225	305	285	365
260	300	195	275	255	335	315	395
300	350	215	305	275	365	345	425
350	400	245	335	315	405	385	475
400	500	285	385	355	455	435	525

8.2.2 Selection of Bearing Internal Clearances

CN Clearance is adequate for standard operating conditions. Clearance becomes progressively smaller from C2 to C1 and larger from C3 to C5.

Standard operating conditions are defined as those where the inner ring speed is less than approximately 50 % of the limiting speed listed in the bearing tables, the load is less than normal $(P \doteq 0.1C_r)$, and the bearing has a tight fit on the shaft.

Units ' um

To reduce bearing noise, the radial internal clearance range is narrower than the normal class and the values are somewhat smaller for deep groove ball bearings and cylindrical roller bearings for electric motors (refer to Table 8.14.1 and 8.14.2).

Internal clearance varies with the fit and temperature differences in operation. The changes in radial internal clearance in a roller bearing are shown in Fig. 8.8.

(1) Decrease in Radial Clearance Caused by Fitting and Residual Clearance

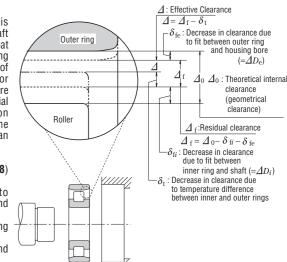
When the inner ring or the outer ring has a tight fit on a shaft or in a housing, a decrease in the radial internal clearance is caused by the expansion or contraction of the bearing rings. The decrease varies according to the bearing type, bearing size, and design of the shaft and housing. The amount of this decrease is approximately 70 to 90% of the interference (refer to Section 8.1.2, Selection of Fit, *(5) Fitting Stress and Ring Expansion and Contraction*, Pages A156 and A157). The internal clearance after subtracting this decrease from the theoretical internal clearance Δ_0 is called the residual clearance Δ_1 .

(2) Decrease in Radial Internal Clearance Caused by Temperature Differences Between Inner and Outer Rings and Effective Clearance

The frictional heat generated during operation is conducted away from the bearing through the shaft and housing. Since housings generally conduct heat better than shafts, the temperature of the inner ring and the rolling elements is usually higher than that of the outer ring by 5 to 10 °C. If the shaft is heated or the housing is cooled, the difference in temperature between the inner and outer rings increases. The radial clearance decreases due to the thermal expansion caused by the temperature difference between the inner and outer rings. The amount of this decrease can be calculated using the following equations:

- where δ_t : Decrease in radial clearance due to temperature difference between inner and outer rings (mm) α : Coefficient of linear expansion of bearing
 - steel = 12.5×10^{-6} (1/°C)
 - \varDelta_t : Temperature difference between inner and outer rings (°C)
 - $D_{\rm e}$: Outer ring raceway diameter (mm)

For ball bearings


 $D_{\rm e} = \frac{1}{5} (4D + d) \dots (8.9)$

For roller bearings

 $D_{\rm e} = \frac{1}{4} (3D + d) \dots (8.10)$

The clearance after subtracting δ_{t} from the residual clearance $\Delta_{\rm f}$ is called the effective clearance $\Delta_{\rm f}$ Theoretically, the longest life of a bearing can be achieved when the effective clearance is slightly negative. However, it is difficult to achieve such an ideal condition, and an excessive negative clearance will greatly shorten the bearing life. Therefore, a clearance of zero or a slightly positive amount, instead of a negative one, should be selected. When singlerow angular contact ball bearings or tapered roller bearings are used facing each other, there should be a small effective clearance, unless a preload is required. When two cylindrical roller bearings with a rib on one side are used facing each other, adequate axial clearance is necessary to allow for shaft elongation during operation.

The radial clearances used in some specific applications are given in Table 8.20. Please consult NSK regarding special operating conditions.

Fig. 8.8 Changes in Radial Internal Clearance of Bearings

Table 8. 20 Example Clearances for Specific Applications

Operating Conditions	Examples	Internal Clearance
When shaft deflection is large	Semi-floating rear wheels of automobiles	C5 or equivalent
When steam passes	Dryers in paper making machines	C3, C4
through hollow shafts or roller shafts are heated	Table rollers for rolling mills	C3
	Traction motors for railways	C4
When impact loads and vibration are severe or	Vibrating screens	C3, C4
when both the inner and outer rings are tight-fitted	Fluid couplings	C4
outor ringo aro tight naou	Final reduction gears for tractors	C4
When both the inner and outer rings are loose- fitted	Rolling mill roll necks	C2 or equivalent
When noise and vibration restrictions are severe	Small motors with special specifications	C1, C2, CM
When clearance is adjusted after mounting to prevent shaft deflection, etc.	Main shafts of lathes	CC9, CC1

8.3 Technical Data

8.3.1 Temperature Rise and Dimensional Change

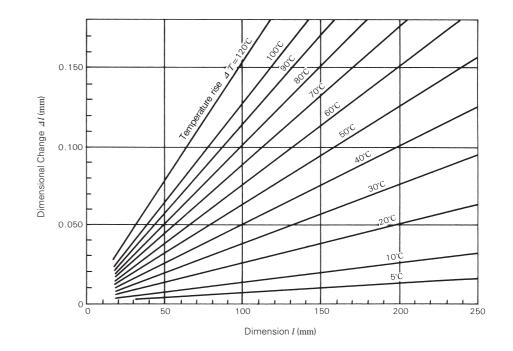
Rolling bearings are extremely precise mechanical elements; any change in dimensional accuracy due to temperature cannot be ignored. Accordingly, as a rule, measurement of a bearing must be performed at 20 °C and the dimensions set forth in the standards must be expressed by values at 20 °C.

Dimensional changes due to temperature change not only affect dimensional accuracy, but also cause changes in the internal clearance of a bearing during operation. Dimensional change may cause interference between the inner ring and shaft or between the outer ring and housing bore. It is possible to achieve shrink fitting with large interference by utilizing dimensional changes induced by temperature differences. The dimensional change Δl due to temperature rise can be expressed as Equation (8.11) below:

 $\Delta l = \Delta T \alpha l \text{ (mm)} \cdots (\mathbf{8.11})$

- where, Δl : Dimensional change (mm)
 - ΔT : Temperature rise (°C)
 - α : Coefficient of linear expansion for bearing steel α =12.5×10⁻⁶ (1/°C)
 - *l*: Original dimension (mm)

Equation (8.11) may be illustrated as shown in Fig. 8.9. In the following cases, Fig. 8.9 can be utilized to easily obtain an approximate numerical values for dimensional change when there is, need to:


- (1) Correct dimensional measurements according to the ambient air temperature
- (2) Find the change in bearing internal clearance due to a temperature difference between the inner and outer rings during operation
- (3) Find the relationship between interference and heating temperature during shrink fitting
- (4) Find the change in interference when a temperature difference exists on the fit surface

Example

If an inner ring with a 110 mm bore is to be shrink-fitted to an n6 tolerance shaft, how much should it be heated?

The maximum interference between an inner ring with a 110 mm bore and an n6 shaft is 0.065 mm. To enable insertion of the inner ring with ease on the shaft, there must be a clearance of 0.03 to 0.04 mm. Accordingly, the inner ring must expand by 0.095 to 0.105 mm.

By using Fig 8.9, the intersection of the vertical axis when $\Delta l = 0.105$ and the horizontal axis when l = 110can be determined. ΔT is located in the temperature range between 70 °C and 80 °C ($\Delta T \approx 77$ °C). Therefore, it's sufficient to set the inner ring heating temperature to the room temperature +80 °C.

FITS AND INTERNAL CLEARANCES

8.3.2 Interference Deviation Due to Temperature Rise (Aluminum Housing, Plastic Housing)

Bearing housing materials such as aluminum, light alloys, or plastics (polyacetal resin, etc.) are often used to reduce weight and cost or improve the performance of equipment.

When non-ferrous materials are used in housings, any temperature rise occurring during operation affects the interference or clearance of the outer ring due to the difference in the coefficients of linear expansion. This change is significant for plastics which have high coefficients of linear expansion.

The deviation of clearance or interference of a fitting surface $\Delta D_{\rm T}$ of a bearing's outer ring due to temperature rise is expressed by the following equation:

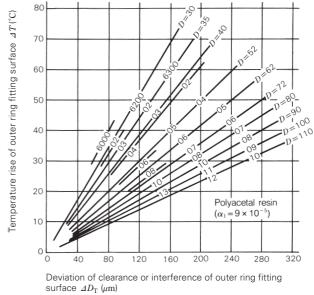
 $\Delta D_{\mathrm{T}} = (\alpha_1 \cdot \Delta T_1 - \alpha_2 \cdot \Delta T_2) D \text{ (mm)} \cdots (\mathbf{8.12})$

where $\Delta D_{\rm T}$: Change of clearance or interference at fitting surface due to temperature rise

- α_1 : Coefficient of linear expansion of housing (1/°*C*)
- ΔT_1 : Housing temperature rise near fitting surface (°C)
- α_2 : Coefficient of linear expansion of bearing outer ring Bearing steel $\alpha_2=12.5\times10^{-6} (1/^{\circ}C)$
- ΔT_2 : Outer ring temperature rise near fitting surface (°C)
- D: Nominal outside diameter (mm)

In general, housing temperature rise and outer ring temperature rise are somewhat different, but if we assume they are approximately equal near the fitting surfaces ($\Delta T_1 = \Delta T_2 = \Delta T$), Equation (8.12) becomes Equation (8.13):

 $\Delta D_{\mathrm{T}} = (\alpha_1 - \alpha_2) \ \Delta T \cdot D \ (\mathrm{mm}) \ \cdots \ (\mathbf{8.13})$


where $\[\] T$: Temperature rise of outer ring and housing near fitting surfaces (°*C*)

Equation (8.13) for aluminum housings ($\alpha_1 = 23.7 \times 10^{-6}$), can be shown graphically as Fig. 8.10. Polyacetal resin is the plastic most-often used for bearing housings. The coefficients of linear expansion of plastics may vary or show directional characteristics. For molded products made with polyacetal resin, the coefficient of linear expansion is approximately 9×10^{-5} . Equation (8.13) for polyacetal-resin housings can be expressed as Fig. 8.11.

D=100 D=110 .D=90 D#80 s' 120 Temperature rise of outer ring fitting surface $\mathcal{AT}(^{\circ}C)$ 100 80 60 40 Aluminum $(\alpha_1 = 23.7 \times 10^{-6})$ 0 0 20 40 60 80 100 120 140 160 Deviation of clearance or interference of $\Delta D_{\rm T}$,

of outer ring fitting surface, μm (Relative expansion of aluminum housing to outer ring)

Fig. 8.10 Aluminum Housing

(Relative expansion of polyacetal resin housing to outer ring)

Fig. 8.11 Polyacetal-Resin Housing

8.3.3 Calculating Residual Internal Clearance After Mounting

The various types of internal bearing clearance were discussed in Section 8.2.2. This section will explain the step by step procedures for calculating residual internal clearance.

When the inner ring of a bearing is press-fit onto a shaft or when the outer ring is press fit into a housing, it stands to reason that radial internal clearance will decrease due to the resulting expansion or contraction of the bearing raceways. Generally, most bearing applications have a rotating shaft which requires a tight fit between the inner ring and shaft and a loose fit between the outer ring and housing; therefore, generally only the effect of the interference on the inner ring needs to be taken into account.

Below we have selected a 6310 single row deep groove ball bearing for our representative calculations. The shaft is set as k5 and the housing set as H7. An interference fit is applied only to the inner ring. Shaft diameter, bore size, and radial clearance are standard bearing measurements. Assuming that 99.7% of the parts are within tolerance, the mean value of residual clearance m_{Af} and standard deviation of the internal clearance after mounting (residual clearance) σ_{Af} can be calculated. Measurements are given in millimeters (mm).

$$\sigma_{s} = \frac{R_{s}/2}{3} = 0.0018$$

$$\sigma_{i} = \frac{R_{i}/2}{3} = 0.0020$$

$$\sigma_{a0} = \frac{R_{a0}/2}{3} = 0.0028$$

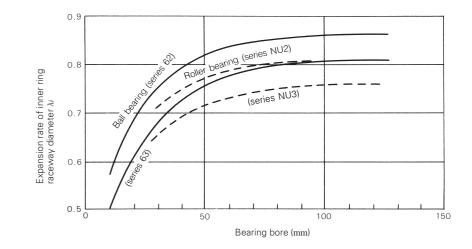
$$\sigma_{i}^{2} = \sigma_{s}^{2} + \sigma_{i}^{2}$$

 $m_{\Delta f} = m_{\Delta 0} - \lambda_i (m_s - m_i) = 0.0035$

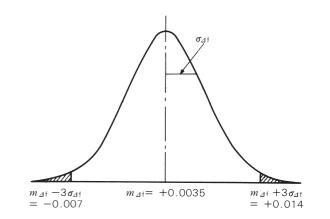
$\sigma_{\Delta f} = \sqrt{\sigma_{\Delta 0}^{2} + \lambda_{i}^{2} \sigma_{f}^{2}} = 0.0035$

- where, $\sigma_{\rm s}$: Standard deviation of shaft diameter
 - σ_i : Standard deviation of bore diameter σ_f : Standard deviation of interference
 - σ_{i} : Standard deviation of interference σ_{a_0} : Standard deviation of radial clearance (before mounting)
 - $\sigma_{\rm af}$: Standard deviation of residual clearance (after mounting)
 - $m_{\rm s}$: Mean value of shaft diameter $(\phi 50+0.008)$
 - m_i : Mean value of bore diameter (ϕ 50–0.006)
 - m_{a_0} : Mean value of radial clearance (before mounting) (0.014)
 - $m_{\Delta f}$: Mean value of residual clearance (after mounting)
 - $R_{\rm s}$: Shaft tolerance (0.011)
 - $\vec{R_i}$: Bearing bore tolerance (0.012) $\vec{R_{a0}}$: Range in radial clearance (before
 - \mathbf{X}_{20} . Range in Taular clearance (being mounting) (0.017)
 - λ_i: Rate of rácèway éxpansion from apparent interference (0.75 from Fig. 8.12)

The average amount of raceway expansion and contraction from apparent interference is calculated from $\lambda_i (m_m - m_i)$.


To determine, within a 99.7% probability, the variation in internal clearance after mounting $R_{\rm aft}$, use the following equation:

 $R_{\Delta f} = m_{\Delta f} \pm 3\sigma_{\Delta f} = +0.014 \text{ to } -0.007$


In other words, the mean value of residual clearance $(m_{\rm af})$ is +0.0035, and the range is from -0.007 to +0.014 for bearing 6310.

	Units : mm
Shaft diameter	φ50 +0.013 +0.002
Bearing bore diameter, (d)	φ ₅₀ 0 -0.012
Radial internal clearance ($arDelta_0$)	0.006 to 0.023(1)

Note (1) Standard internal clearance, unmounted

8.3.4 Effect of Interference Fits on Bearing Raceways (Fit of Inner Ring)

One important factor related to radial clearance is the reduction in radial clearance resulting from the mounting fit. When an inner ring is mounted on a shaft with an interference fit and the outer ring is secured in a housing with an interference fit, the inner ring will expand and the outer ring will contract.

The means of calculating the amount of ring expansion or contraction were previously noted in Section 8.1.2 (5); however, the equation for establishing the amount of inner raceway expansion ΔD_i is given in Equation (8.14) below:

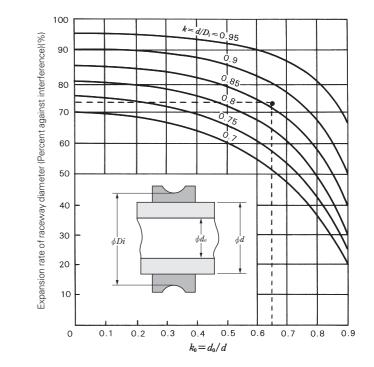
$$\Delta D_{i} = \Delta d \ k \ \frac{1 - k_{0}^{2}}{1 - k^{2} k_{0}^{2}} \ \cdots \ (8.14)$$

where, Δd : Effective interference (mm)

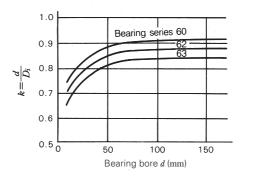
- k: Ratio of bore to inner raceway diameter; $k=d/D_i$
- k_0 : Ratio of inside to outside diameter of hollow shaft; $k_0 = d_0/D_i$
- d: Bore or shaft diameter (mm)
- D_i : Inner raceway diameter (mm)
- d_0 : Inside diameter of hollow shaft (mm)

Equation (8.14) is represented in a clearer graphical form in Fig. 8.14.

The vertical axis of Fig. 8.14 represents inner raceway diameter expansion in relation to the amount of interference. The horizontal axis represents k_0 : the ratio of the inside diameter of a hollow shaft to the outside diameter.


Generally, the decrease in radial clearance is calculated to be approximately 80% of the interference for solid shaft mountings only. For hollow shaft mountings the decrease in radial clearance varies with the ratio of inside shaft diameter to outside shaft diameter. Since the general 80% rule is based on average bearing bore size to inner raceway diameter ratios, the change will vary with different bearing types, sizes, and series. Typical plots for single-row deep groove ball bearings and for cylindrical roller bearings are shown in Figs. 8.15 and 8.16. Values in Fig. 8.14 apply only for steel shafts.

As an example, let us determine the decrease in the radial clearance of a 6220 ball bearing mounted on a hollow shaft (diameter d=100 mm, inside diameter $d_0=65 \text{ mm}$) with a fit class of m5.


The ratio between bore diameter and raceway diameter k is 0.87 as shown in Fig. 8.15. The ratio of the shaft inside diameter to the shaft outside diameter k_0 , is $k_0=d_0/d=0.65$. Thus, reading from Fig. 8.14, the rate of raceway expansion is 73%.

Given that an interference of m5 has a mean value of 30 $\mu m,$ the amount of raceway expansion, or, the

amount of decrease in the radial clearance from the fit is 0.73 \times 30 = 22 $\mu m.$

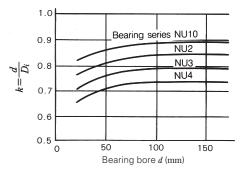
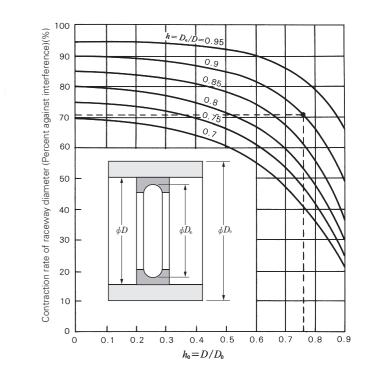
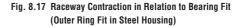


Fig. 8.15 Ratio of Bore Size to Raceway Diameter for Single-Row Deep Groove Ball Bearings Fig. 8.16 Ratio of Bore Size to Raceway Diameter for Cylindrical Roller Bearings

8.3.5 Effect of Interference Fits on Bearing Raceways (Fit of Outer Ring)


When a bearing load is applied on a rotating inner ring (outer ring carrying a static load), an interference fit is adopted for the inner ring and the outer ring is mounted either with a transition fit or a clearance fit. However, when load is applied on a rotating outer ring (inner ring carrying a static load) or when there is an indeterminate load and the outer ring must be mounted with an interference fit, a decrease in radial internal clearance caused by the fit begins to contribute in the same way as when the inner ring is mounted with an interference fit. Because the amount of interference that can be applied to the outer ring is limited by stress, the constraints of most bearing applications make it difficult to apply a large amount of interference to the outer ring. In addition, instances where there is an indeterminate load are quite rare compared to those where a rotating inner ring carries the load; therefore, there are few occasions where it is necessary to be cautious about the decrease in radial clearance caused by outer ring interference. The decrease in outer raceway diameter ΔD_e is calculated using Equation (8.15) below:


where ΔD : Effective interference (mm)

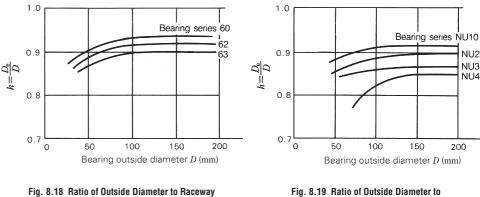

- *h*: Ratio between raceway dia. and outside dia. of outer ring, $h=D_{e}/D$
- h_0 : Housing thickness ratio, $h_0 = D/D_0$
- *D*: Bearing outside diameter (housing bore diameter) (mm)
- D_e : Raceway diameter of outer ring (mm)
- $D_{\rm e}$: Outside diameter of housing (mm)

Fig. 8.17 represents the above equation graphically. The vertical axis shows the outer ring raceway contraction as a percentage of interference, and the horizontal axis shows the housing thickness ratio h_0 . The data are plotted for constant values of outer ring thickness ratios from 0.7 through 1.0 in increments of 0.05. The value of thickness ratio h will differ with bearing type, size, and diameter series. Representative values for single-row deep groove ball bearings and cylindrical roller bearings are given in Figs. 8.18 and 8.19 respectively.

Loads applied on rotating outer rings occur in such applications as automotive front axles, tension pulleys, conveyor systems, and other pulley systems. As an example, let us estimate the decrease in radial clearance for a 6207 ball bearing mounted in a steel housing with an N7 fit. The outside diameter of the housing is assumed as $D_0 = 95$, and the bearing outside diameter D = 72. From Fig. 8.18, the outer ring thickness ratio, h, is 0.9. Because $h_0 = D/D_0 = 0.76$, the raceway contraction is 71 %, as indicated in Fig 8.17. Taking the mean value for N7 interference as 18 μ m, the contraction of the outer raceway, or decrease in radial clearance is 0.71 × 18 \approx 13 μ m.

. 8.18 Ratio of Outside Diameter to Raceway Diameter for Single-Row Deep Groove Ball Bearings ig. 8.19 Ratio of Outside Diameter to Raceway Diameter for Cylindrical Roller Bearings

8.3.6 Measuring Internal Clearance of Combined Tapered Roller Bearings (Offset Measuring Method)

Combined tapered roller bearings are available in two types: a back-to-back arrangement (DB type) and a face-to-face arrangement (DF type) (see Figs. 8.20 and Fig. 8.21). These arrangements have certain advantages and can be assembled as a set or combined with other bearings as a fixed- or free-side bearing.

The cages of DB tapered roller bearing arrangements protrude from the back side of the outer ring; therefore, the outer ring spacer (K spacer in Fig. 8.20) is mounted to prevent mutual contact of cages. An inner ring spacer (L spacer in Fig. 8.20), with the appropriate width is provided for the inner ring to secure the clearance. For the DF type, a K spacer is used, as shown in Fig. 8.21.

In general, to use such a bearing arrangement requires an appropriate clearance that accounts for heat generated during operation or an applied preload that increases the rigidity of the bearings. The spacer width should be adjusted so as to provide an appropriate clearance or preload (minus clearance) after mounting. The clearance measurement method for a DB arrangement is as follows:

(1) As shown in Fig. 8.22, put bearing A on the surface plate and after stabilizing the rollers by rotating the outer ring (over 10 turns), measure the offset $f_A = T_A B_A(\text{consult Figs. 8.22 through 8.24 for these symbols}). (2) Next, as shown in Fig. 8.23, use the same procedure$ to measure bearing B for its offset $f_{\rm B}=T_{\rm B}-B_{\rm B}$. (3) Last, measure the width of the K and L spacers as shown in Fig. 8.24.

From the results of the above measurements, the axial clearance Δ_{a} of the arrangement can be obtained by Equation (8.16):

 $\Delta_a = (L-K) - (f_A + f_B) \dots (8.16)$

As an example, let's confirm the clearance of tapered roller bearing arrangement HR32232JDB + KLR10AC3 to specifications. First, refer to Table 8.17 and note that the C3 clearance range is $\Delta_r = 110$ to 140 μm.

To compare this specification with the offset measurement results, convert it into axial clearance Δ_{a} by using Equation (8.17):

 $\Delta_a = \Delta_r \cot \alpha = \Delta_r \frac{1.5}{1.5} \dots (8.17)$

where *e*: Constant determined for each bearing No. (listed in the bearing tables of this catalog)

By referring to Page C205, we find e=0.44 and the following:

$$\Delta_{\rm a}$$
=(110 to 140)× $\frac{1.5}{e}$
= 380 to 480 µm

We can confirm that the bearing clearance is C3 by

verifying that the axial clearance Δ_a of Equation (8.16) (obtained by the bearing offset measurement) is within the above-mentioned range.

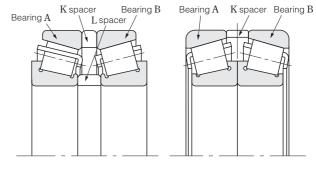
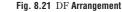



Fig. 8.20 DB Arrangement

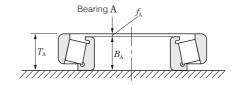


Fig. 8.22

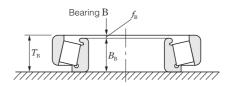


Fig. 8.23

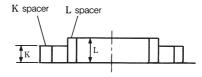
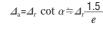


Fig. 8.24


8.3.7 Internal Clearance Adjustment When Mounting a Tapered Roller Bearing

Two single-row tapered roller bearings are usually arranged in a configuration opposite each other with clearance adjusted in the axial direction. There are two types of opposite placement methods: back-to-back (DB arrangement) and face-to-face (DF arrangement). Clearance adjustment for a back-to-back arrangement is performed by tightening the inner ring by a shaft nut or a shaft end bolt. In Fig. 8.25, an example using a shaft-end bolt is shown. In this case, the fit on the tightened side of the inner ring with the shaft must be loose to allow displacement of the inner ring in the axial direction.

For a face-to-face arrangement (Fig. 8.26), a shim is inserted between the cover, which retains the outer ring in the axial direction, and the housing in order to allow adjustment to the specified axial clearance. In this case, use a loose fit between the tightened side of the outer ring and the housing in order to allow appropriate displacement of the outer ring in the axial direction. This is not necessary when the surrounding structure is designed to install the outer ring into a retaining cover (Fig. 8.27), allowing for both easy mounting and dismounting.

Theoretically, fatigue life is longest when bearing clearance is slightly negative during operation; however if the negative clearance is excessive, fatigue life becomes very short and heat generation quickly increases. Thus, we generally recommend that the clearance be slightly positive (slightly above zero) during operation. The bearing clearance after mounting should be decided while considering the reduction in clearance caused by the temperature difference between inner and outer rings during operation and thermal expansion of the shaft and housing in the axial direction.

In practice, clearances C1 or C2 are frequently adopted, as detailed in Table 8.17 on Page A173. In addition, the relationship between radial clearance Δ_r and axial clearance Δ_a is as follows:

where α : Contact angle

e: Constant determined for each bearing No. (listed in the bearing tables of this catalog)

Tapered roller bearings, which are used for head spindles of machine tools, automotive final reduction gears, etc., are set to a negative clearance for the purpose of obtaining bearing rigidity. This method is called a preload. There are two different types of preloading: constant-pressure preload and the more commonly used position preload.

There are two methods of position preload: one uses an already adjusted arrangement of bearings, while the other achieves the specified preload by tightening an adjustment nut or using an adjustment shim.

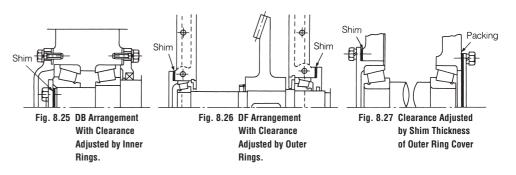

Constant pressure preload applies the appropriate preload to the bearing by means of a spring, hydraulic pressure, etc.

Fig. 8.28 shows an automotive final reduction gear. For pinion gears, preload is adjusted by use of an inner ring spacer and shim. For large gears on the other hand, preload is controlled by the tightening torque of the outer ring retaining screw.

Fig. 8.29 shows the rear wheel of a truck. In this application, preload is applied by tightening the inner ring in the axial direction with a shaft nut. The preload is controlled by measuring the starting friction moment of the bearing.

Fig. 8.30 shows an example lathe head spindle where preload is controlled by tightening the shaft nut.

Fig. 8.31 shows an example of constant-pressure preload by spring displacement. In this case, the relationship between the spring's preload and displacement is used to establish the constantpressure preload.

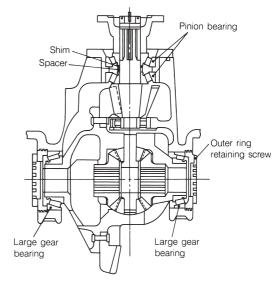
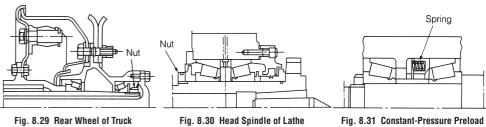
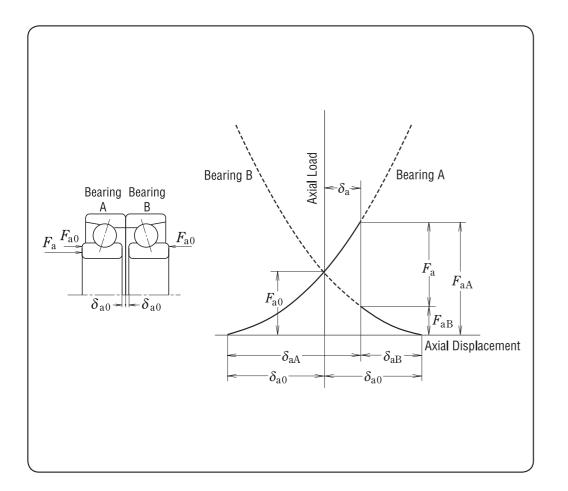




Fig. 8.28 Automotive Final Reduction Gear

Applied by Spring

9. PRELOAD

9.1	Purpose	of	Preload	·······	A	192
-----	---------	----	---------	---------	---	-----

9.2 Preloading Methods A 192

9.2.1 Position Preload	A 192
------------------------	-------

- 9.2.2 Constant-Pressure Preload A 192
- 9.3 Preload and Rigidity A 192
- 9.3.1 Position Preload and Rigidity A 192
 9.3.2 Constant-Pressure Preload and Rigidity A 193

9.4	Selection of Preloading Method and
	Amount of Preload A 193

9.4.1 Comparison of Preloading Methods A 193

9.5 Amount of Preload A 194

- 9.5.1 Average Preload for Paired Mounting Angular Contact Ball Bearings
 9.5.2 Preload of Thrust Ball Bearings
- 9.5.3 Preload of Spherical Thrust Roller Bearings A 198

9.6	Technical Data	A 200
-----	----------------	-------

- 9.6.2 Axial Displacement of Deep Groove Ball Bearings ... A 208
- 9.6.3 Axial Displacement of Tapered Roller Bearings A 212

9. PRELOAD

Rolling bearings usually retain some internal clearance while in operation. In some cases however, a negative clearance is desirable to keep them internally stressed. This is called "preloading". A preload is usually applied to bearings whose clearance can be adjusted during mounting, such as angular contact ball bearings or tapered roller bearings. Usually, two bearings are mounted face-to-face or back-to-back to form a paired mounting with a preload.

9.1 Purpose of Preload

The main purposes and some typical applications of preloaded bearings are as follows:

- To maintain the bearings in an exact position both radially and axially and to maintain the running accuracy of the shaft.
 Applications: Main shafts of machine tools, precision instruments, etc.
- (2) To increase bearing rigidity Applications: Main shafts of machine tools, pinion shafts of final drive gears of automobiles, etc.
- (3) To minimize noise due to axial vibration and resonance
- Applications: Small electric motors, etc. (4) To prevent sliding between the rolling elements and
- raceways due to unwanted gyratory sliding and spin sliding Applications: High speed or high acceleration

applications of angular contact ball bearings and thrust ball bearings

(5) To maintain the rolling elements in their proper position with the bearing rings Applications: Thrust ball bearings and spherical thrust roller bearings mounted on a horizontal shaft

9.2 Preloading Methods

9.2.1 Position Preload

A position preload is achieved by fixing two axially opposed bearings in such a way that a preload is imposed on them. Their position, once fixed, remains unchanged while in operation.

In practice, the following three methods are generally used to obtain a position preload:

- (1) Installing a paired mounting with previously adjusted stand-out dimensions (see Page A007, Fig. 1.1) and axial clearance.
- (2) Using spacers or shims that have been specifically sized to obtain the required spacing and preload. (refer to Fig. 9.1)
- (3) Utilizing bolts or nuts to allow adjustment of the axial preload. In this case, the starting torque should be measured to verify the proper preload.

9.2.2 Constant-Pressure Preload

A constant-pressure preload is achieved by using a coil or disc spring to impose a constant preload. Even if the relative position of the bearings changes during operation, the spring ensures that the magnitude of the preload remains relatively constant (refer to Fig. 9.2).

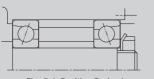


Fig. 9.1 Position Preload

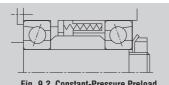
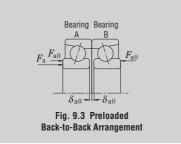



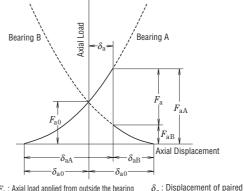
Fig. 9.2 Constant-Pressure Preload

9.3 Preload and Rigidity

9.3.1 Position Preload and Rigidity

The inner rings of Bearing A and B in the paired mounting shown in Fig. 9.3 are each displaced by δ_{a0} . When they are fixed axially, this clearance between inner rings $2\delta_{a0}$ is eliminated. Under this condition, preload F_{a0} is imposed on each bearing. A preload diagram showing bearing rigidity, or the relation between load and displacement with given axial load F_a imposed on a paired mounting, is shown in Fig. 9.4.

9.3.2 Constant-Pressure Preload and Rigidity


A preload diagram for paired mountings under constant-pressure preload is shown in Fig. 9.5. The deflection curve of the spring is nearly parallel to the horizontal axis because the rigidity of the spring is lower than that of the bearing. As a result, rigidity under a constant-pressure preload is approximately equal to that of a single bearing with a preload F_{a0} applied to it. Fig. 9.6 presents a comparison of rigidity between a bearing with a position preload and one with a constant-pressure preload.

9.4 Selection of Preloading Method and Amount of Preload

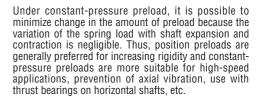
9.4.1 Comparison of Preloading Methods

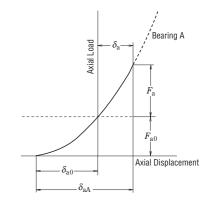
A comparison of the rigidity of both preloading methods is shown in Fig. 9.6. Position preload and constant-pressure preload may be compared as follows:

- (1) When both preloads are equal, position preload provides greater bearing rigidity. In other words, bearings with position preload experience less deflection due to external loads.
- (2) Under position preload, the amount of preload varies depending on such factors as differences in axial expansion due to temperature differences between the shaft and housing, differences in radial expansion due to temperature differences between the inner and outer rings, deflection due to load, etc.

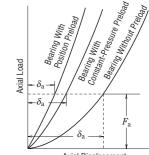
 $F_{\rm a}$: Axial load applied from outside the bearing $F_{\rm a}_{\rm A}$: Axial load imposed on Bearing A $F_{\rm aB}$: Axial load imposed on Bearing B

Fig. 9.4 Axial Displacement With Position Preload


mountina


 δ_{aA}

 δ_{aB}


: Displacement of Bearing A

Displacement of Bearing B

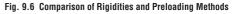


Fig. 9.5 Axial Displacement With Constant-Pressure Preload

Axial Displacement

9.5 Amount of Preload

If preload is larger than necessary, abnormal heat generation, increased frictional torque, reduced fatigue life, or other negative effects may occur. The amount of preload should be carefully determined considering the operating conditions and the purpose of the preload.

9.5.1 Average Preload for Duplex Angular Contact Ball Bearings

Angular contact ball bearings are widely used in spindles for grinding, milling, high-speed turning, and similar applications. NSK divides preloads into four graduated classifications—Extra light, Light, Medium, and Heavy—to allow appropriate preload for the specific application. These four preload classes are expressed by codes EL, L, M, and H respectively when applied to DB and DF bearing sets.

The average preload and measured axial clearance for paired mounting angular contact ball bearing sets with a contact angle of 15° (widely used on machine tool spindles) are given in Tables 9.3 to 9.5.

The measuring load when measuring axial clearance is shown in Table 9.1.

The recommended axial clearance to achieve proper preload was determined for machine-tool spindles and other applications requiring ISO Class 5 and above high-precision bearing sets. The standard values given in Table 9.2 are used for the shandard values and housing/outer ring fits. Housing fits should be selected from the lower part of the standard clearance range for bearings in fixed-end applications and the higher part of the standard clearance range in free-end applications. As a general rule, grinding machine spindles or machining center spindles require extra light to light preloads, whereas lathe spindles, which need rigidity, require medium preloads.

If the bearing set is mounted with a tight fit, preloads are greater than those shown in Tables 9.3 to 9.5. Since excessive preload causes bearing temperature rise and increases the risk of seizure among other negative effects, pay careful attention to fitting. When speeds result in a value of $D_{\rm pw} \times n$ ($d_{\rm m}n$ value) higher than 500 000, the preload should be very carefully studied and selected. In such a case, please consult with NSK before bearing selection.

Table 9.1 Measuring Load for Axial Clearance

Nominal (Diameter)		Measuring Load
over	incl	(N)
10*	50	24.5
50	120	49
120	200	98
200	—	196

*10 mm is included in this range.

Table 9.2 Target Fitting

Units : um

			οιπις . μπ	
Bore or Outs d or D		Shaft and Inner Ring	Housing and Outer Ring	
over	incl	Target Interference	Target Clearance	
—	18	0 to 2	—	
18	30	0 to 2.5	2 to 6	
30	50	0 to 2.5	2 to 6	
50	80	0 to 3	3 to 8	
80	120	0 to 4	3 to 9	
120	150	—	4 to 12	
150	180	_	4 to 12	
180	250	—	5 to 15	

Table 9.3 Average Preload and Axial Clearance for Series 79C Bearings

	Extra L	ight EL	Lig	nt L	Mediu	um M	Hear	vy H
Bearing Designation	Preload	Axial Clearance	Preload	Axial Clearance	Preload	Axial Clearance	Preload	Axial Clearance
	(N)	(µm)	(N)	(µm)	(N)	(µm)	(N)	(µm)
7900C	7	5	16	2	29	-1	58	-6
7901C	8.6	4	16	2	41	-3	77	-8
7902C	12	3	25	0	47	-4	104	-11
7903C	11	3	25	0	56	-5	119	-12
7904C	20	1	42	-3	80	-8	152	-15
7905C	19	1	37	-2	99	-9	203	-17
7906C	25	0	46	-3	95	-8	204	-16
7907C	33	2	67	-2	149	-9	297	-18
7908C	41	1	78	-3	196	-12	384	-22
7909C	49	0	104	-5	192	-11	391	-21
7910C	49	0	95	-4	240	-13	499	-24
7911C	60	-1	111	-5	296	-15	593	-26
7912C	60	-1	113	-5	305	-15	581	-25
7913C	74	-2	151	-7	348	-16	690	-27
7914C	101	-4	205	-10	503	-22	1 004	-36
7915C	103	-4	190	-9	489	-21	997	-35
7916C	104	-4	195	-9	503	-21	986	-34
7917C	138	-6	307	-14	629	-25	1 281	-41
7918C	153	-3	289	-9	740	-23	1 488	-39
7919C	154	-3	294	-9	800	-24	1 588	-40
7920C	191	-5	387	-13	905	-28	1 790	-46

Remark The axial clearance column contains measured values.

	Extra L	ight EL	Ligl	ht L	Medi	um M	Hea	vy H
Bearing Designation	Preload	Axial Clearance	Preload	Axial Clearance	Preload	Axial Clearance	Preload	Axial Clearance
	(N)	(µm)	(N)	(µm)	(N)	(µm)	(N)	(µm)
7000C	13	3	25	0	49	-5	96	-12
7001C	13	3	25	0	57	-6	120	-14
7002C	12	3	29	-1	66	-7	147	-16
7003C	15	2	30	-1	69	-7	156	-16
7004C	25	0	49	-4	119	-12	244	-22
7005C	30	-1	58	-5	148	-14	292	-24
7006C	41	1	75	-3	195	-13	386	-24
7007C	58	-1	121	-7	251	-16	493	-28
7008C	58	-1	114	-6	291	-17	594	-30
7009C	80	-3	144	-8	338	-19	695	-33
7010C	70	-2	152	-8	388	-20	791	-34
7011C	95	-4	200	-11	479	-24	971	-40
7012C	96	-4	189	-10	526	-25	1 092	-42
7013C	130	-6	260	-13	537	-24	1 062	-39
7014C	148	-7	285	-14	732	-30	1 460	-48
7015C	151	-7	294	-14	796	-31	1 573	-49
7016C	202	-6	382	-14	921	-31	1 880	-52
7017C	205	-6	393	-14	995	-32	1 956	-52
7018C	247	-8	502	-18	1 187	-37	2 373	-60
7019C	275	-9	549	-19	1 188	-36	2 348	-58
7020C	282	-9	534	-18	1 278	-37	2 572	-60

Table 9.5 Average Preload and Axial Clearance for Series 72C Bearings

	Extra L	ight EL	Lig	ht L	Mediu	um M	Heav	vy H
Bearing Designation	Preload	Axial Clearance	Preload	Axial Clearance	Preload	Axial Clearance	Preload	Axial Clearance
	(N)	(µm)	(N)	(µm)	(N)	(µm)	(N)	(µm)
7200C	13	3	29	-1	68	-8	150	-18
7201C	20	1	39	-3	99	-12	197	-22
7202C	20	1	40	-3	97	-11	199	-21
7203C	25	0	46	-4	146	-16	296	-28
7204C	35	-2	68	-7	196	-20	384	-33
7205C	42	1	82	-4	193	-14	402	-27
7206C	57	-1	114	-7	292	-20	591	-35
7207C	75	-3	151	-10	385	-25	794	-43
7208C	98	-5	202	-13	501	-29	985	-47
7209C	123	-7	254	-16	534	-30	1 067	-49
7210C	127	-7	248	-15	590	-31	1 171	-50
7211C	142	-8	289	-17	788	-38	1 554	-60
7212C	190	-11	397	-22	928	-42	1 878	-67
7213C	219	-12	448	-23	1 069	-44	2 175	-70
7214C	243	-9	484	-20	1 164	-42	2 368	-69
7215C	270	-10	530	-21	1 224	-42	2 445	-68
7216C	305	-12	595	-24	1 367	-47	2 752	-76
7217C	355	-14	697	-27	1 658	-53	3 358	-85
7218C	384	-15	771	-29	1 865	-57	3 713	-90
7219C	448	-18	876	-33	2 081	-63	4 153	-99
7220C	503	-20	984	-36	2 337	-68	4 700	-107

Remark The axial clearance column contains measured values.

Remark The axial clearance column contains measured values.

9.5.2 Preload of Thrust Ball Bearings

When the balls in thrust ball bearings rotate at relatively high speeds, sliding due to gyroscopic moments on the balls may occur. The larger of the two values obtained from Equations (9.1) and (9.2) below should be adopted as the minimum axial load in order to prevent such sliding:

$F_{\rm a \, min} = \frac{C_{0a}}{100} \left(\frac{n}{N_{\rm max}}\right)^2 \dots$ (9.1) $F_{\rm a\,min} = \frac{C_{0\,\rm a}}{1000}$(9.2)

where $F_{a\min}$: Minimum axial load (N), {kgf} C_{0a} : Basic static load rating (N), {kgf} n: Speed (min⁻¹) N_{max} : Limiting speed (oil lubrication) (min⁻¹)

9.5.3 Preload of Spherical Thrust Roller Bearings

When spherical thrust roller bearings are used, damage such as scoring may occur due to sliding between the rollers and outer ring raceway. The minimum axial load $F_{\rm a \ min}$ necessary to prevent such sliding is obtained from the following equation:

$$F_{\rm a min} = \frac{C_{0 \rm a}}{1000}$$
(9.3)

9.6 Technical Data

9.6.1 Load and Displacement of Position-Preloaded Bearings

Bearing arrangements refer to multiple identical ball or tapered roller bearings mounted side by side as a set. When two bearings are used, they are often referred to as paired mountings or duplex bearings.

In bearing arrangements for machine tool spindles, single-row angular contact ball bearings are most often used for their high rigidity to reduce bearing displacement under load.

Paired mountings fall into three types: back-to-back, with load lines that diverge toward the bearing axis; face-to-face, with load lines that converge toward the bearing axis; and tandem, with parallel load lines. The designations for these arrangements are DB, DF, and DT respectively (Fig. 9.7).

Different arrangements are used depending on the application. DB and DF arrangements can take axial loads in either direction. Since the distances of the load centers of DB arrangements are longer than those of DF arrangements, they are widely used in applications where moment loads occur. DT arrangements can only take axial loads in one direction; however, because the two bearings share load equally between them, this type can be used when load in one direction is large.

By selecting DB or DF arrangements preset with proper preloads, radial and axial displacement of the bearing inner and outer rings can be reduced as much as possible (DT arrangements can not be preloaded in this way). The amount of preload can be adjusted by changing the clearance between bearings δ_{a0} , as shown in Figs. 9.9 to 9.11. Preloads are divided into four graduated classifications: Extra Light (EL), Light (L), Medium (M), and Heavy (H). DB and DF arrangements are often used for applications where shaft misalignments and displacements due to load must be minimized. Arrangements of three bearings (triplex) are designated DBD, DFD, and DTD, as shown in Fig. 9.8. Sets of four or five bearings can also be used depending on application requirements. Paired mountings are often used with a preload. Since preload affects affects various things, such as the rise in bearing temperature during operation, torque, bearing noise, and especially bearing life, it is extremely important to avoid applying excessive preload.

 $\delta_{a}=c F_{a}^{2/3} \cdots (9.4)$

where *c*: Constant depending on the bearing type and dimensions.

Fig. 9.9 shows the preload curves of a DB arrangement, and Figs. 9.10 and 9.11 show preload curves for a DBD arrangement. If the inner rings of a paired mounting as in Fig. 9.9 are pressed axially, A-side and B-side bearings are deformed by δ_{a0A} and δ_{a0B} respectively and the clearance (between the inner rings) δ_{a0} becomes zero. This condition means that preload \overline{F}_{a0} is applied on the arrangement. If external axial load F_a is applied on the preloaded arrangement from the A-side, then the A-side bearing will be deformed by an additional δ_{a1} and the displacement of B-side bearing will be reduced to the same amount as the A-side bearing displacement δ_{a1} . Therefore, the displacements of A- and B-side bearings are $\delta_{aA} = \delta_{a0A}$ + δ_{a1} and $\delta_{aB} = \delta_{a0B} + \delta_{a1}$ respectively. In other words, the load on the A-side bearing including preload is F_{a0} $+ F_a - F_a'$ and that on the B-side is $F_{a0} - F_a'$.

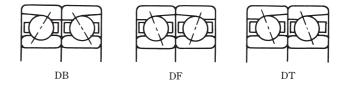


Fig. 9.7 Paired Mounting Bearing Arrangements

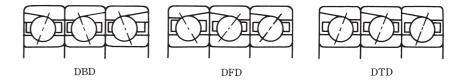
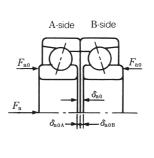



Fig. 9.8 Triplex Bearing Arrangements

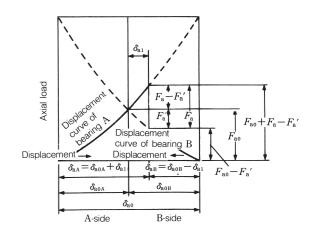
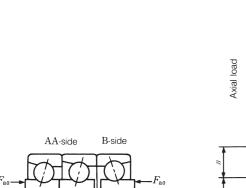
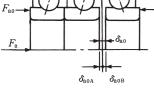


Fig. 9.9 Preload Graph of DB Back-to-Back Arrangement

If the bearing set has an applied preload, the A-side bearing should have sufficient life and load capacity for an axial load $(F_{a0}+F_a-F_a')$ under operating speed conditions. The axial clearance δ_{a0} is shown in Tables 9.3 to 9.5 of Section 9.5.1 (Pages A195 to A197).

Fig. 9.10 shows external axial load $F_{\rm a}$ applied on AA-side bearings. The axial loads and displacements of AA- and B-side bearings are summarized in Table 9.6.

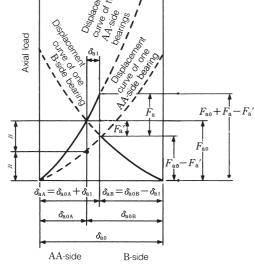
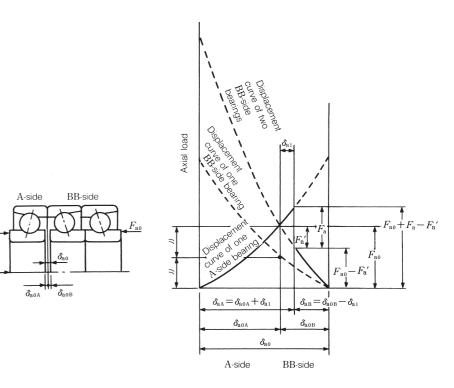

Fig. 9.11 shows external axial load F_a applied on an A-side bearing. The axial loads and displacements of A- and BB-side bearings are summarized in Table 9.7.

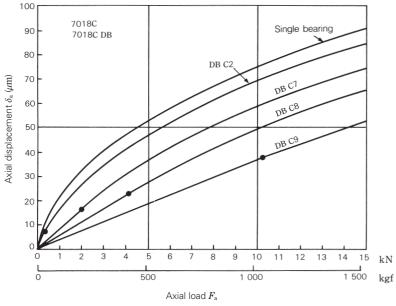

Figs. 9.12 to 9.17 show the relationship of axial load to axial displacement for DB and DBD arrangements of 7018C and 7018A bearings under several preload ranges.

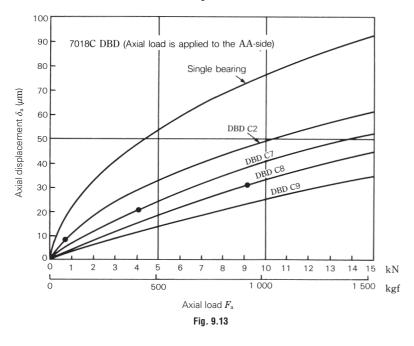
Direction	Displacement	Axial load
AA-side	$\delta_{\scriptscriptstyle a0A} + \delta_{\scriptscriptstyle a1}$	$F_{\rm a0} + F_{\rm a} - F_{\rm a}'$
B-side	$\delta_{\scriptscriptstyle a0B}{-}\delta_{\scriptscriptstyle a1}$	$F_{\mathrm{a0}}-F_{\mathrm{a}}'$

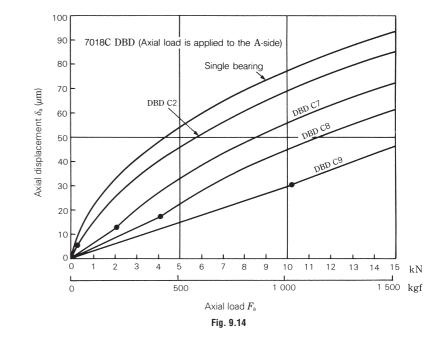
Table 9.7

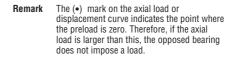
Direction	Displacement	Axial load
A-side	$\delta_{\scriptscriptstyle a0A} + \delta_{\scriptscriptstyle a1}$	$F_{\rm a0} + F_{\rm a} - F_{\rm a}'$
BB-side	${\delta}_{\scriptscriptstyle a0B}{-}{\delta}_{\scriptscriptstyle a1}$	$F_{\mathrm{a0}}{-}F_{\mathrm{a}}{}^{\prime}$

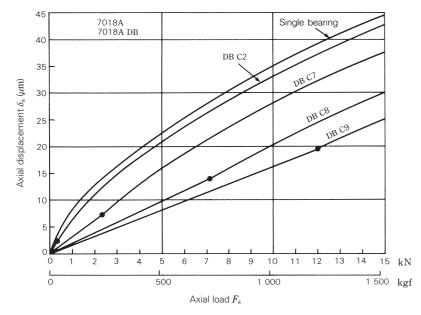



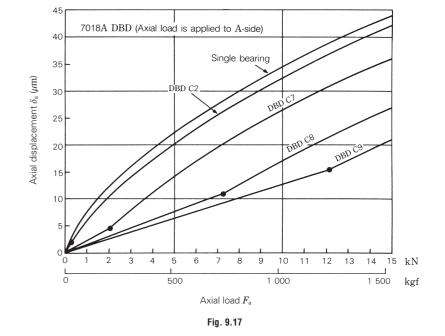

Fig. 9.10 Preload Graph for a DBD Arrangement (Axial Load Applied From the AA-Side)

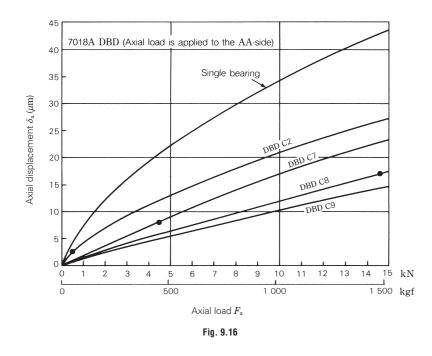

 F_{a0}


 $F_{\rm a}$


Fig. 9.11 Preload Graph for a DBD Arrangement (Axial Load Applied From A-Side)







Remark The (•) mark on the axial load or displacement curve indicates the point where the preload is zero. Therefore, if the axial load is larger than this, the opposed bearing does not impose a load.

9.6.2 Axial Displacement of Deep Groove Ball Bearings

When an axial load F_a is applied to a radial bearing with contact angle α_0 and the inner ring is displaced δ_a , the center of the inner ring raceway radius Oiis also moved to Oi' resulting in contact angle α as shown in Fig. 9.18. If δ_N represents the elastic deformation of the raceway and ball in the direction of the rolling element load Q, Equation (9.5) is derived from Fig. 9.18.

 $(m_0+\delta_N)^2=(m_0\cdot\sin\alpha_0+\delta_a)^2+(m_0\cdot\cos\alpha_0)^2$

$$\therefore \delta_{\rm N} = m_0 \left\{ \sqrt{\left(\sin \alpha_0 + \frac{\delta_a}{m_0} \right)^2 + \cos^2 \alpha_0} - 1 \right\} \dots (9.5)$$

In addition, the following relationship exists between rolling element load Q and elastic deformation $\delta_{\rm N}$.

 $Q = K_{\rm N} \cdot \delta_{\rm N}^{3/2}$ (9.6)

where $K_{\rm N}$: Constant depending on bearing material, type, and dimensions If we introduce the relation of

$$m_0 = \left(\frac{r_{\rm e}}{D_{\rm w}} + \frac{r_i}{D_{\rm w}} - 1\right) D_{\rm w} = B \cdot D_{\rm w}$$

Equations (9.5) and (9.6) are

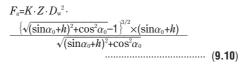
$$Q=K_{\rm N} (B \cdot D_{\rm w})^{3/2} \left\{ \sqrt{(\sin\alpha_0 + h)^2 + \cos^2\alpha_0} - 1 \right\}^{3/2}$$

where $h = \frac{\delta_{\rm a}}{m_0} = \frac{\delta_{\rm a}}{B \cdot D_{\rm w}}$
If we introduce the relation of $K_{\rm N}=K \cdot \frac{\sqrt{D_{\rm w}}}{B^{3/2}}$
 $Q=K \cdot D_{\rm w}^2 \left\{ \sqrt{(\sin\alpha_0 + h)^2 + \cos^2\alpha_0} - 1 \right\}^{3/2}$ (9.7)
On the other hand, the relation between bearing axial
load and rolling element load is shown in Equation

load and rolling element load is shown in Equation (9.8) using Fig. 9.19:

 $F_a = Z \cdot Q \cdot \sin \alpha \quad \dots \quad (9.8)$

Based on Fig. 9.18, we obtain,


 $(m_0+\delta_N)$ sin $\alpha=m_0\cdot\sin\alpha_0+\delta_a$

$$\therefore \sin \alpha = \frac{m_0 \cdot \sin \alpha_0 + \delta_a}{m_0 + \delta_N} = \frac{\sin \alpha_0 + h}{1 + \frac{\delta_N}{m_0}}$$

If we substitute Equation (9.5),

$$\sin\alpha = \frac{\sin\alpha_0 + h}{\sqrt{(\sin\alpha_0 + h)^2 + \cos^2\alpha_0}} \dots (9.9)$$

In other words, the relation between the bearing axial load F_a and axial displacement δ_a can be obtained by substituting Equations (9.7) and (9.9) for Equation (9.8).

- where K: Constant depending on bearing material and design
 - $D_{\rm w}$: Ball diameter
 - *Z*: Number of balls α_0 : Initial contact angle
 - The initial contact angle for single-row deep groove ball bearings can be obtained using Equation (5) on Page C012

Actual axial deformation varies depending on bearing mounting conditions and factors such as the material and thickness of the shaft and housing and bearing fitting. For more details, consult with NSK.

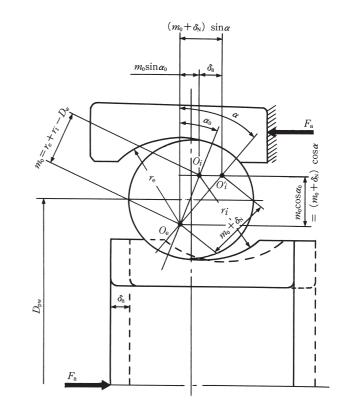


Fig. 9.18

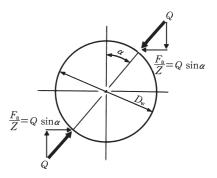


Fig. 9.19

Fig. 9.20 shows the relation between axial load and axial displacement for Series 6210 and 6310 singlerow deep groove ball bearings with initial contact angles of 0°, 10°, and 15°. The larger the initial contact angle α_0 , the more rigid the bearing will be in the axial direction and the smaller the difference between the axial displacements of 6210 and 6310 under identical axial load. The initial contact angle α_0 depends on the groove radius and the radial clearance.

Fig. 9.21 shows the relation between axial load and axial displacement for Series 72 angular contact ball bearings with initial contact angles of 15° (C), 30° (A), and 40° (B). Series 70 and 73 bearings with identical contact angles and bore diameters can be considered to have almost the same values as Series 72 bearings. Angular contact ball bearings that sustain loads in the axial direction must maintain their running accuracy and reduce elastic deformation from applied loads when used as multiple bearing arrangements with a preload.

To determine the preload to keep the elastic deformation caused by applied loads within the required limits, it is important to know the characteristics of load vs. deformation. The relationship between load and displacement can be expressed by Equation (9.10) as $F_a \propto \delta_a^{3/2}$ or $\delta_a \propto F_a^{2/3}$. In other words, axial displacement δ_a is proportional to axial load F_a to the 2/3 power. When this axial load index is less than one, relative axial displacement will be small, with only a small increase in axial load (Fig. 9.21). The underlying reason for applying a preload is to reduce the amount of displacement.

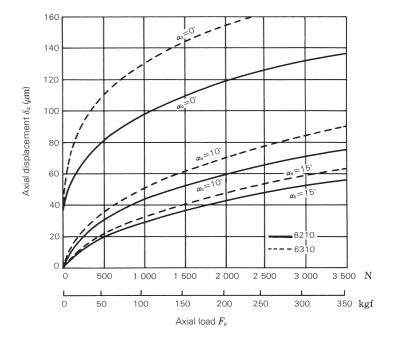


Fig. 9.20 Axial Load and Axial Displacement of Deep Groove Ball Bearings

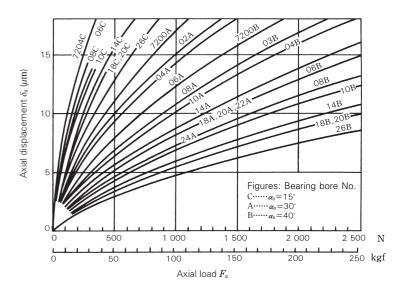


Fig. 9.21 Axial Load and Axial Displacement of Angular Contact Ball Bearings

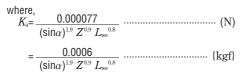
9.6.3 Axial Displacement of Tapered Roller Bearings

Tapered roller bearings are widely used in pairs like angular contact ball bearings. Take care when selecting appropriate tapered roller bearings.

For example, the bearings of machine-tool head spindles and automobile differential pinions are preloaded to increase shaft rigidity.

When a bearing with an applied preload is to be used, it is essential to have some knowledge of the relationship between axial load and axial displacement. For tapered roller bearings, the axial displacement calculated using Palmgren's method in Equation (9.11) generally agrees well with actual measured values.

Actual axial deformation varies depending on the bearing mounting conditions, such as the material and thickness of the shaft and housing and the bearing fitting. For more details, consult with NSK.


$$\delta_{a} = \frac{0.000077}{\sin\alpha} \cdot \frac{Q^{0.9}}{L_{we}^{0.8}}$$
(N)
= $\frac{0.0006}{\sin\alpha} \cdot \frac{Q^{0.9}}{L_{we}^{0.8}}$ {kgf}

- where, δ_{a} : Axial displacement of inner, outer ring (mm)
 - α : Contact angle...1/2 the outer ring angle (°) (Refer to Fig. 9.22)
 - Q: Load on rolling elements (N), {kgf}

$$Q = \frac{F_a}{Z \sin \alpha}$$

- $L_{\rm we}$: Length of effective contact on roller (mm)
- F_a: Axial load (N), {kgf}
- Z: Number of rollers

Equation (9.11) can also be expressed as Equation (9.12).

Here $K_{\rm a}$ refers to the coefficient determined by bearing internal design.

Axial loads and axial displacement for tapered roller bearings are plotted in Fig. 9.23.

The amount of axial displacement of tapered roller bearings is proportional to the axial load raised to the 0.9 power. The displacement of ball bearings is proportional to the axial load raised to the 0.67 power; thus, the preload required to control displacement is much greater for ball bearings than for tapered roller bearings.

Take caution not to make the preload indiscriminately large on tapered roller bearings, since too large of a preload can cause excessive heat, seizure, and reduced bearing life.

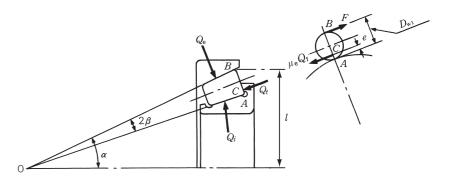


Fig. 9.22

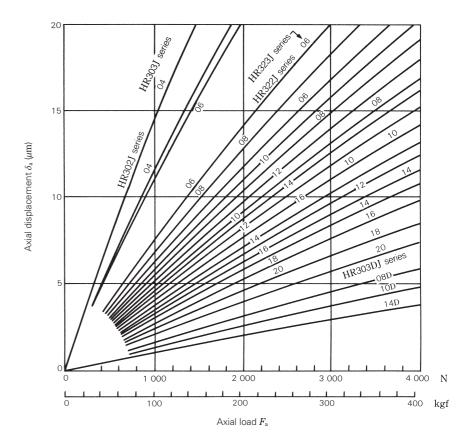
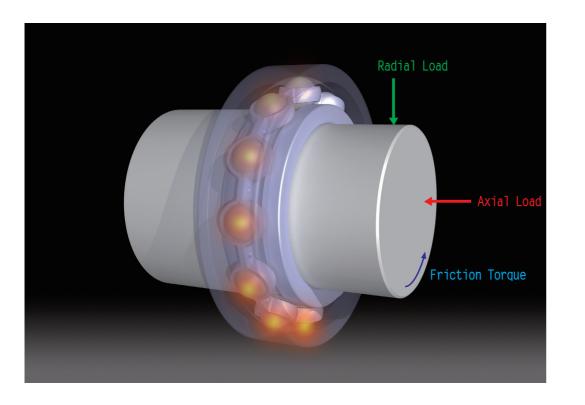



Fig. 9.23 Axial Load and Axial Displacement for Tapered Roller Bearings

10. FRICTION

10.1 Co	efficients of Dynamic Friction A 216
10.1.1	Bearing Types and Their Coefficients of Dynamic Friction μ
10.2 Em	pirical Equations for Running Torque A 216
10.3 Tec	hnical Data A 216
10.3.1	Preload and Starting Torque for Angular Contact Ball Bearings A 216
10.3.2	Empirical Equations for Running Torque of High-Speed Ball Bearings
10.3.3	Preload and Starting Torque for Tapered Roller Bearings
10.3.4	Empirical Equations for Running Torque of Tapered Roller Bearings

10. FRICTION

10.1 Coefficients of Dynamic Friction 10.1.1 Bearing Types and Their Coefficients of Dynamic Friction μ

M: Dynamic friction torque (N·mm), {kgf·mm}

P : Load on a bearing (dynamic equivalent load) (N), {kgf}

d : Shaft diameter, inner ring bore diameter (mm)

Table 10.1 Coefficients of Dynamic Friction

Bearing Types	Approximate Values of μ
Deep Groove Ball Bearings	0.0013
Angular Contact Ball Bearings Self-Aligning Ball Bearings	0.0015 0.0010
Thrust Ball Bearings	0.0011
Cylindrical Roller Bearings	0.0010
Tapered Roller Bearings Spherical Roller Bearings	0.0022 0.0028
Needle Roller Bearings With Cages	0.0015
Full Complement Needle Roller Bearings	0.0025
Spherical Thrust Roller Bearings	0.0028

10.2 Empirical Equations for Running Torque

Dynamic bearing	- Load term (determined by bearing type and load) $M_i=f_1Fd_m$ where f_1 : Coefficient determined by bearing type and load F: Load
	$d_{\rm m}$: Pitch circle diameter of rolling
	element
	 Speed term (determined by oil
	viscosity, amount, speed)
	$M_v = f_0 (v_0 n)^{2/3} dm^3$
	where f_0 : Coefficient determined by
	bearing and lubricating method
	v : Kinomatic viscosity of oil

 v_0 : Kinematic viscosity of oil

n : Speed

10.3 Technical Data

10.3.1 Preload and Starting Torque for Angular Contact Ball Bearings

Angular contact ball bearings, like tapered roller bearings, are most often used in pairs rather than alone or in other multiple bearing sets. Back-to-back and face-to-face bearing sets can be preloaded to adjust bearing rigidity. Extra Light (EL), Light (L), Medium (M), and Heavy (H) are standard preloads. Friction torque of the bearing will increase in direct proportion to the preload.

The starting torque of angular contact ball bearings is mainly caused by angular slippage between the balls and contact surfaces on the inner and outer rings. Starting torque for the bearing M due to such spin is given by the following equation:

 $M=M_{\rm s}\cdot Z\sin\alpha$ (mN·m), {kgf·mm} (10.2)

where $M_{\rm s}$: Spin friction for contact angle α centered on the shaft,

 $M_{\rm s} = \frac{3}{8} \mu_{\rm s} \cdot Q \cdot a \cdot E(k)$

 $(mN \cdot m), \{kgf \cdot mm\}$

- μ_s : Contact-surface slip friction coefficient Q: Load on rolling elements (N), {kgf}
- a: (1/2) of contact-ellipse major axis (mm)

E(k): With $k = \sqrt{1 - \left(\frac{b}{a}\right)^2}$

as the population parameter, second class complete ellipsoidal integration

- *b*: (1/2) of contact-ellipse minor axis (mm) *Z*: Number of balls
- α : Contact angle (°)

Actual measurements with 15° angular contact ball bearings correlate well with calculated results using $\mu_{\rm s}$ = 0.15 in Equation (10.2). Fig. 10.1 shows the calculated friction torque for Series 70C and 72C bearings.

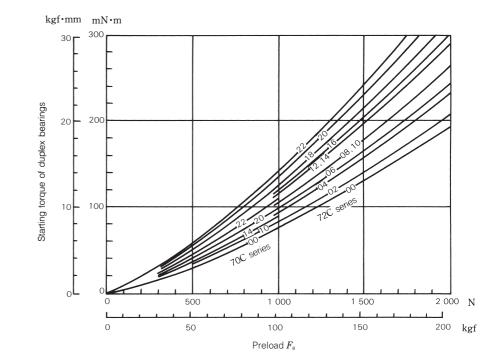


Fig. 10.1 Preload and Starting Torque for DF and DB Angular Contact Ball Bearing (α =15°) Arrangments

FRICTION

10.3.2 Empirical Equations for Running Torque of High-Speed Ball Bearings Empirical equations are presented below for the running torque of high speed ball bearings subject to axial loading and jet lubrication. These equations are

based on the results of tests of angular contact ball bearings with bore diameters of 10 to 30 mm, but they can be extrapolated to larger bearings. Running torque M can be obtained as the sum of a load term M_i and speed term M_n as follows:

 $M = M_l + M_v (mN \cdot m), \{kgf \cdot mm\}$ (10.3)

Load term M_l refers to friction with no relation to speed or fluid friction and is expressed by the experimentally-based Equation (10.4).

 $\frac{M_l = 0.672 \times 10^{-3} D_{\rm pw}^{0.7} F_a^{1.2} (\rm mN \cdot m)}{= 1.06 \times 10^{-3} D_{\rm pw}^{0.7} F_a^{1.2} \{\rm kgf \cdot \rm mm\}}$ (10.4)

where, D_{pw} . Pitch diameter of rolling elements (mm) F_{a} . Axial load (N), {kgf}

Speed term M_r refers to fluid friction, which depends on angular speed and is expressed by Equation (10.5).

 $M_{v} = 3.47 \times 10^{-10} D_{pw}^{3} n_{i}^{14} Z_{B}^{a} Q^{b} (mN \cdot m)$ $= 3.54 \times 10^{-11} D_{pw}^{3} n_{i}^{14} Z_{B}^{a} Q^{b} \{kgf \cdot mm\}$ (10.5)

where, n_i : Inner ring speed (min⁻¹) $Z_{\rm B}$: Absolute viscosity of oil at outer ring temperature (mPa · s), {cp} Q: Oil flow rate (kg/min)

Exponents a and b, which affect oil viscosity and flow rate factors, depend only on angular speed and are given by Equations (10.6) and (10.7) as follows:

An example estimation for the running torque of highspeed ball bearings is shown in Fig. 10.2. A comparison of values calculated using these equations and actual measurements is shown in Fig. 10.3. When the contact angle exceeds 30°, the influence of spin friction becomes large, so the running torque given by the equations will be low.

Calculation Example

Obtain the running torque of high speed angular contact ball bearing 20BNT02 (ϕ 20 × ϕ 47×14) under the following conditions: $n_i = 70\ 000\ \text{min}^{-1}$ $F_a = 590\ \text{N}, \{60\ \text{kgf}\}$ Lubrication: Jet, oil viscosity: 10 mPa · s {10 cp} oil flow: 1.5 kg/min

From Equation (10.4), $M_l = 0.672 \times 10^{-3} D_{pw}^{0.7} F_a^{1.2}$ $= 0.672 \times 10^{-3} \times 33.5^{0.7} \times 590^{1.2}$ $= 16.6 \text{ (mN} \cdot \text{m)}$ $M_l = 1.06 \times 10^{-3} \times 33.5^{0.7} \times 60^{1.2}$ $= 1.7 \text{ {kgf}} \cdot \text{mm}$ From Equations (10.6) and (10.7),

a = $24n_i^{-0.37}$ = $24 \times 70\ 000^{-0.37}$ = 0.39 b = $4 \times 10^{-9}n_i^{1.6} + 0.03$ = $4 \times 10^{-9} \times 70\ 000^{1.6} + 0.03 = 0.26$

From Equation (10.5),

 $M_v = 3.47 \times 10^{-10} \dot{D}_{\rm pw}^{-14} n_i^{-14} Z_{\rm B}^{-4} Q^{\rm b}$ = 3.47 × 10^{-10} × 33.53 × 70 000^{1.4} × 10^{0.39} × 1.5^{0.26} = 216 (mN \cdot m)

 $\begin{array}{l} M_{v} = 3.54 \times 10^{-11} \times 33.5^{3} \times 70\ 000^{1.4} \times 10^{0.39} \times 1.5^{0.26} \\ = 22.0\ \{\mathrm{kgf} \cdot \mathrm{mm}\} \end{array}$

 $M = M_l + M_v = 16.6 + 216 = 232.6 \text{ (mN·m)}$ $M = M_l + M_v = 1.7 + 22 = 23.7 \text{ {kgf·mm}}$

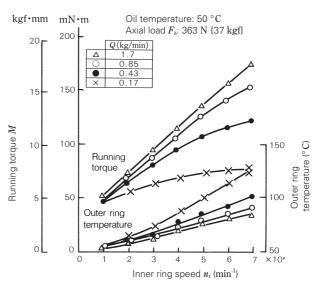


Fig. 10.2 Typical Test Example

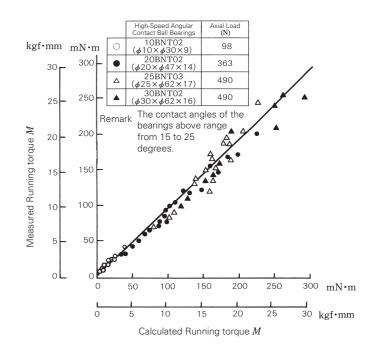


Fig. 10.3 Comparison of Actual Measurements and Calculated Values

FRICTION

10.3.3 Preload and Starting Torque for Tapered Roller Bearings

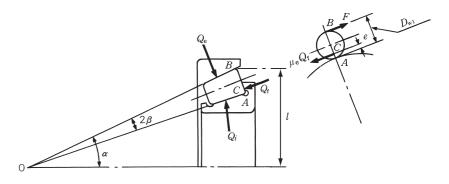
The balance of loads on the bearing rollers when a tapered roller bearing is subjected to axial load F_a is expressed by the following three Equations:

$Q_e = \frac{F_a}{Z \sin \alpha} \cdots$	(10.8)
$Q_i = Q_e \cos 2\beta = \frac{\cos 2\beta}{Z \sin \alpha} F_a \cdots$	(10.9)
$\sin 2\beta$ π	

$$Q_{i}=Q_{e}\sin 2\beta = \frac{\sin 2\beta}{Z\sin \alpha}F_{a} \qquad (10.10)$$

- where Q_e : Rolling element load on outer ring (N), $\{kgf\}$
 - Q_i : Rolling element load on inner ring (N), {kgf}
 - $Q_{\rm f}$: Rolling element load on inner ring large end rib, (N), {kgf} (assume $Q_{\rm f} \perp Q_i$)
 - Z: Number of rollers
 - α : Contact angle...one-half included outer ring angle (°)
 - β : One-half the tapered roller angle (°)
 - $D_{\rm w1}$: Roller large end diameter (mm) (Fig. 10.4)
 - e: Contact point between roller end and rib (Fig. 10.4)

As represented in Fig. 10.4, when circumferential load F is applied to the bearing outer ring and the roller turns in the direction of the applied load, the starting torque for contact point C relative to instantaneous center A becomes $e \mu_e Q_r$.


Therefore, the balance of frictional torque is

- $D_{w1}F=e \mu_e Q_f (mN \cdot m), \{kgf \cdot mm\} \cdots (10.11)$
- where μ_{e} : Friction coefficient between inner ring large rib and roller end face

Starting torque *M* for one bearing is given by M=F Z l $= \frac{e \mu_e l \sin 2\beta}{D_{w1} \sin \alpha} F_a$ (mN·m), {kgf·mm} (10.12)

Starting torque *M* is sought considering only the slip friction between the roller end and the inner ring largeend rib. However, when the load on a tapered roller bearing reaches or exceeds a certain level (around the preload), the slip friction in the space between the roller end and inner ring large end rib becomes the decisive factor for bearing starting torque, and the torque caused by other factors can be ignored. Values for *e* and β in Equation (10.12) are determined by bearing design. Consequently, by assuming a value for μ_e , the starting torque can be calculated. The values for *e* must be considered as a

The values for μ_e and for *e* must be considered as a dispersion; thus, even bearings with the same number can have quite diverse individual starting torques. When using a value for *e* determined by the bearing design, the average value for the bearing starting torque can be estimated using $\mu_e = 0.20$, which is the average value determined from various test results. Fig. 10.5 shows the results of calculations for various tabered roller bearing series.

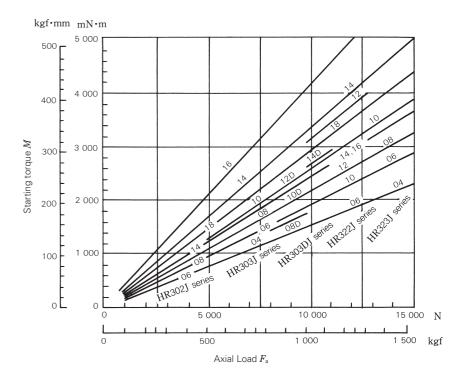


Fig. 10.5 Axial Load and Starting Torque for Tapered Roller Bearings

A 220

FRICTION

10.3.4 Empirical Equations for Running Torque of Tapered Roller Bearings

When tapered roller bearings operate under axial load, the torque of tapered roller bearings is based on the following two kinds of resistance, which are the major components of friction:

(1) Rolling resistance (friction) of rollers with outer or inner ring raceways—elastic hysteresis and viscous rolling resistance of EHL

(2) Sliding friction between inner ring ribs and roller ends.

When an axial load $F_{\rm a}$ is applied on tapered roller bearings, the loads shown in Fig. 10.6 are applied on the rollers.

$$Q_{e} \doteq Q_{i} = \frac{F_{a}}{Z \sin\alpha}$$
(10.14)
$$Q_{i} = \frac{F_{a} \sin 2\beta}{Z \sin\alpha}$$
(10.15)

- where Q_{e} : Rolling element load on outer ring
 - \tilde{Q}_i : Rolling element load on inner ring
 - $Q_{\rm f}$: Rolling element load on inner ring large
 - end rib
 - Z: Number of rollers
 - *α*: Contact angle...One-half included outer ring angle
 - β : One-half tapered roller angle

For simplicity, Fig. 10.7 shows a model using the average diameter $D_{\rm we}$ along with the following variables:

M_i, M_e :	Rolling resistance (moment)
$F_{\rm si}, F_{\rm se}, F_{\rm sf}$:	Sliding friction
R_i, R_e :	Radii at center of inner and
	outer ring raceways
<i>e</i> :	Contact height of roller end
	face with rib

When the balance of sliding friction and moments on the rollers are considered as represented in Fig 10.7, the following equations are obtained:

 $F_{\rm se} - F_{\rm si} = F_{\rm sf}$ (10.16)

$$M_{i}+M_{e}=\frac{D_{w}}{2}F_{se}+\frac{D_{w}}{2}F_{si}+\left(\frac{D_{w}}{2}-e\right)F_{sf}$$
......(10.17)

When the running torque M applied on the outer (inner) ring is calculated using Equations (10.16) and (10.17) and multiplied by the number of rollers Z, the following is obtained:

$$M=Z (R_{c} F_{sc}-M_{c})$$

$$= \frac{Z}{D_{w}} (R_{c} M_{i}+R_{i}M_{c}) + \frac{Z}{D_{w}} R_{c} e F_{sf}$$

$$= M_{R}+M_{S}$$

Therefore, the rolling friction on the raceway surface $M_{\rm R}$ and sliding friction on the ribs $M_{\rm S}$ are separately obtained.

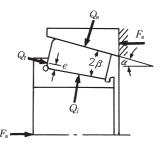


Fig. 10.6 Loads Applied on Roller

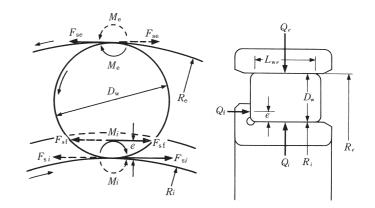


Fig. 10.7 Parts Where Friction is Generated

The running torque M of a tapered roller bearing can be obtained from the rolling friction on the raceway $M_{\rm R}$ and sliding friction on the ribs $M_{\rm s}$.

$$M = M_{\rm R} + M_{\rm S} = \frac{Z}{D_{\rm w}} (R_{\rm e} M_{\rm i} + R_{\rm i} M_{\rm e})$$

+ $\frac{Z}{D_{\rm w}} R_{\rm e} \ e \ F_{\rm sf} \cdots$ (10.18

Sliding Friction on Rib M_s

As a part of $M_{\rm S}$, $F_{\rm sf}$ refers to the tangential load caused by sliding, so we can write $F_{\rm sf} = \mu Q_{\rm f}$ using the coefficient of dynamic friction μ . Further, by substituting in axial load F_{a} , the following equation is obtained:

This is identical to the equation for starting torque, but μ is not constant and decreases depending on operating conditions and running-in. For this reason, Equation (10.19) can be rewritten as follows:

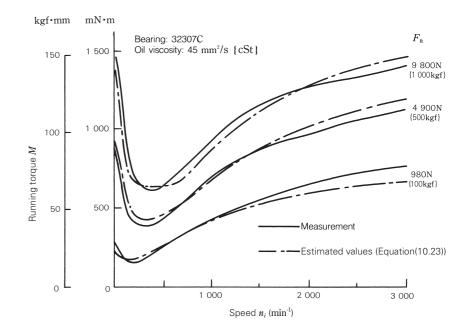
$$M_{\rm S}=e\,\mu_0\,\cos\beta\,F_{\rm a}f'\,(\Lambda,\,t,\,\sigma)\quad\cdots\cdots\quad(10.20)$$

where μ_0 is approximately 0.2 and $f'(A, t, \sigma)$ is a function that decreases with running in and oil film formation but is set equal to one at starting.

Rolling Friction on Raceway Surface $M_{\rm R}$

Most of the rolling friction on the raceway is from viscous oil resistance (EHL rolling resistance) corresponding to M_i and M_e in Equation (10.18). A theoretical equation exists but should be corrected based on the results of experiments. The following equation includes corrective terms:

Therefore, $M_{\rm R}$ can be obtained using Equations (10. 21) and (10.22) together with the following equation:


$$M_{\rm R} = \frac{Z}{D_{\rm w}} (R_{\rm e} M_i + R_i M_{\rm e})$$


Running Torque of Bearings M From these, the running torque of tapered roller bearings M is given by Equation (10.23).

As shown in Figs. 10.8 and 10.9, the values obtained using Equation (10.23) correlate rather well with actual measurements; therefore, estimation of running torque with good accuracy is possible. Please consult NSK with any questions or concerns.

[Symbol Definitions]

- G, W, U: EHL dimensionless parameters
- L: Coefficient of thermal load
- Pressure coefficient of lubricating oil α_0 : viscosity R:
 - Equivalent radius
- Constant k:
- E': Equivalent elastic modulus Contact angle (One-half included outer α :
- ring angle)
- R_i, R_e : Inner and outer ring raceway radii (center)
- Half angle of roller β:
- Indication of inner ring or outer ring *i*, e: respectively $L_{\rm we}$:
 - Effective roller length

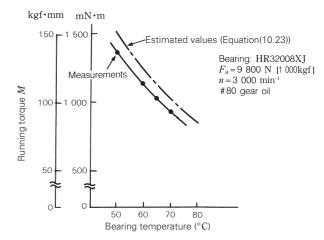



Fig. 10.9 Viscosity Variation and Running Torque

11. LUBRICATION

11.1	Purposes of	Lubrication	β	۹ 228
------	-------------	-------------	---	-------

11.2Lubricating MethodsA 22811.2.1Grease LubricationA 228(1)Grease QuantityA 228(2)Replacement of GreaseA 229(3)Replenishment IntervalA 229(4)Grease Life of Sealed Ball BearingsA 23111.2.2Oil LubricationA 232(1)Oil Bath LubricationA 232(2)Drip-Feed LubricationA 232(3)Splash LubricationA 232(4)Circulating LubricationA 233(5)Jet LubricationA 234

(6)	Oil Mist Lubrication	A 235
(7)	Oil/Air Lubricating Method	A 235

11.3 Lubricants A 23	36
11.3.1 Lubricating Grease	36
(1) Base Oil	36
(2) Thickener	36
(3) Additives	36
(4) Consistency A 23	36
(5) Mixing Different Types of Grease	38
11.3.2 Lubricating Oil A 23	38

11.4	Tecl	nical Data		A 240
11.4	.1	Brands an	d Properties of Lubrica	ting Greases A 240

11. LUBRICATION

11.1 Purposes of Lubrication

The main purposes of lubrication are to reduce friction and wear inside the bearings that may cause premature failure. The effects of lubrication may be briefly explained as follows:

(1) Reduction of Friction and Wear

Direct metallic contact between the basic components of the bearing (bearing rings, rolling elements and cage) is prevented by an oil film that reduces friction and wear in contact areas.

(2) Extension of Fatigue Life

The rolling fatigue life of bearings depends greatly upon the viscosity and film thickness between the rolling contact surfaces. An oil film with the proper thickness during rotation prolongs bearing life. Conversely, an insufficient oil film or excessively low viscosity lubricant will shorten life.

(3) Dissipation of Frictional Heat and Cooling

Circulating lubrication is used to carry away frictional or absorbed heat, prevent the bearing from overheating, and prevent oil from deteriorating.

(4) Others

Àdequate lubrication also helps to prevent foreign material from entering the bearings and guards against corrosion and rusting.

11.2 Lubricating Methods

Lubricating methods are first divided into either grease or oil lubrication. Satisfactory bearing performance can be achieved by adopting the lubricating method most suitable for the particular application and operating condition.

In general, oil offers superior lubrication; however, grease lubrication allows for a simpler structure around the bearings. A comparison of grease and oil lubrication is given in Table 11.1.

Table 11.1 Comparison of Grease and Oil Lubrication

Item	Grease Lubrication	Oil Lubrication	
Housing Structure/ Seal Configuration	Can be simple	Somewhat complex. Requires careful maintenance	
Speed	Supports 65-80% the permissible speeds of oil lubrication	Supports higher speeds than grease	
Cooling Effect	None	Can effectively dissipate heat (with circulating lubrication, etc.)	
Flowability	Poor	Good	
Full Replacement	Somewhat complex	Relatively easy	
Contaminant Filtration	Difficult	Easy	
External Contamination	Little effect from leaks	Unsuitable in areas where contamination must be avoided	

11.2.1 Grease Lubrication

(1) Grease Quantity

The quantity of grease to be packed in a housing depends on the housing design and free space, grease characteristics, and ambient temperature. For example, bearings for main shafts of machine tools where accuracy may be impaired by a small temperature rise require only a small amount of grease.

Sufficient grease must be packed inside the bearing including the cage guide face. The amount to be packed inside the the housing depends on the speed of the application:

Fill 1/2 to 2/3 of the free internal space with grease when the speed is 50% of the limiting speed or less.

Fill 1/3 to 1/2 of the free internal space with grease when the speed is 50% of the limiting speed or more.

(2) Replacement of Grease

Grease, once packed, usually need not be replenished for a long time; however, under severe operating conditions, grease should be frequently replenished or replaced. In such cases, the bearing housing should be designed to facilitate grease replenishment and replacement.

When replenishment intervals are short, provide replenishment and discharge ports at appropriate positions so that deteriorated grease is replaced by fresh grease. For example, the housing space on the grease-supply side can be divided into several sections with partitions. The grease on the partitioned side gradually passes through the bearings and old grease forced from the bearing is discharged through a grease valve (Fig. 11.1). If a grease valve is not used, the

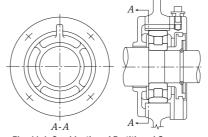
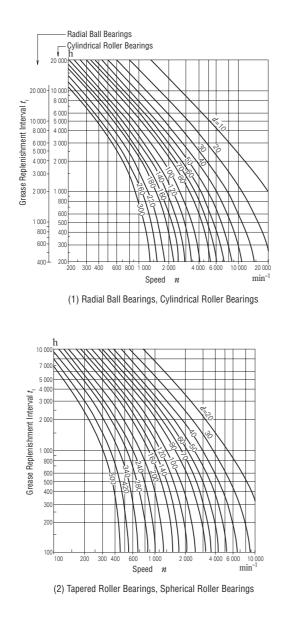


Fig. 11.1 Combination of Partitioned Grease Reservoir and Grease Valve

space on the discharge side must be larger than the partitioned side so that it can retain old grease, which can be removed periodically by removing the cover.

(3) Replenishment Interval

Even if high-quality grease is used, grease deterioration occurs with time; therefore, periodic replenishment is required. Graphs (1) and (2) in Fig 11.2 show the replenishment intervals for various bearing types running at different speeds. These graphs show high-quality, lithium-soap mineral oil grease at a bearing temperature of 70 °C under normal load (P/C=0.1).


· Temperature

If the bearing temperature exceeds 70 $^{\circ}C$, reduce the replenishment interval by half for every 15 $^{\circ}C$ increase. Grease

Replenishment intervals can be extended depending on the grease used, especially for ball bearings. For example, high-quality lithium-soap synthetic oil grease roughly doubles the replenishment interval shown in Fig.11.2 (1). If the temperature of the bearings is less than 70 $^{\circ}$ C, the usage of lithium-soap mineral oil grease or lithium-soap synthetic oil grease is appropriate.

·Load

The replenishment interval depends on the magnitude of the bearing load. Please refer to Fig.11.2 (3) for details. If P/C exceeds 0.16, please consult NSK.

(3) Load factor	P/C	≦0.06	0.1	0.13	0.16]
	Load factor	1.5	1	0.65	0.45]

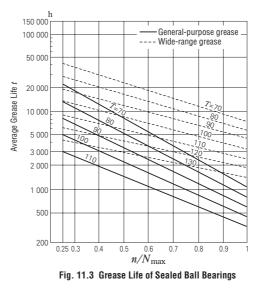
Fig. 11.2 Grease Replenishment Intervals

(4) Grease Life of Sealed Ball Bearings

When grease is packed into single-row deep groove ball bearings, the grease life may be estimated using Equation (11.1), Equation (11.2), or Fig. 11.3: (General purpose grease (¹))

$$log t = 6.54 - 2.6 \frac{n}{N_{\text{max}}} - \left(0.025 - 0.012 \frac{n}{N_{\text{max}}}\right)T$$
.....(11.1)

(Wide-range grease (2))


$$log t = 6.12 - 1.4 \frac{n}{N_{\text{max}}} - \left(0.018 - 0.006 \frac{n}{N_{\text{max}}}\right)T$$
.....(11.2)

where t: Average grease life (h)

- *n* : Speed (min⁻¹)
 *N*_{max} : Limiting speed with grease lubrication (min⁻¹)
 (values for ZZ and VV types are listed in the bearing tables)
 - T: Operating temperature °C

Equation (11.1), Equation (11.2), and Fig. 11.3 apply under the following conditions: (a) Speed *n*

$$0.25 \leq \frac{n}{N_{\text{max}}} \leq 1$$

when $\frac{n}{N_{\text{max}}} < 0.25$, assume $\frac{n}{N_{\text{max}}} = 0.25$

(b) Operating Temperature TFor general-purpose grease (1)

 $70 \circ C \leq T \leq 110 \circ C$

For wide-range grease (²)

 $70 \,^{\circ}\mathrm{C} \leq T \leq 130 \,^{\circ}\mathrm{C}$

When $T < 70 \,^{\circ}\text{C}$ assume $T = 70 \,^{\circ}\text{C}$

(c) Bearing Loads

The bearing loads should be about 1/10 or less the basic load rating $C_{\rm r}$.

- Notes (1) Mineral-oil base greases (e.g. lithium-soap base grease) often used around – 10 to 110 °C. (2) Synthetic-oil base greases are usable over
 - a wide temperature range around -40 to 130 °C.

11.2.2 Oil Lubrication

(1) Oil-Bath Lubrication

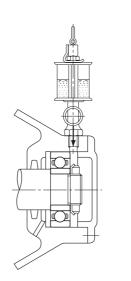
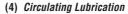
Oil-bath lubrication is widely used with low or medium speeds. The oil level should be at the center of the lowest rolling element. Ideally, provide a sight gauge so the proper oil level may be maintained (Fig. 11.4)

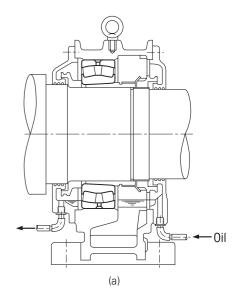
(2) Drip-Feed Lubrication

Drip-feed lubrication is widely used for small ball bearings operated at relatively high speeds. As shown in Fig. 11.5, oil is stored in a visible oiler. The oil drip rate is controlled with a screw in the top.

(3) Splash Lubrication

With this method, oil is splashed onto the bearings by gears or a simple rotating disc installed near bearings without submerging the bearings in oil. Splash lubrication is commonly used in automobile transmissions and final drive gears. Fig. 11.6 shows this lubricating method used on a reduction gear.


Fig. 11.5 Drip-Feed Lubrication

Circulating lubrication is commonly used for highspeed operation requiring bearing cooling and for bearings used at high temperatures. In Fig. 11.7(a), oil is supplied to a specified level by a pipe on the right side. Once this level is reached, oil flows out the discharge pipe on the left.

discharge pipe on the left. In Figs. 11.7(b) and (c), the oil does not accumulate within the housing, but rather the oil is returned to a tank. Once cooled, the oil passes through a pump and filter and returns to the bearing.

filter and returns to the bearing. Oil discharge pipes should be larger than the supply pipe so that oil does not over-accumulate in the housing.

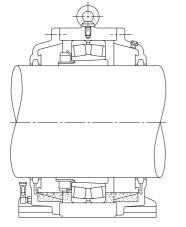
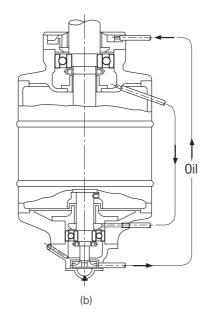
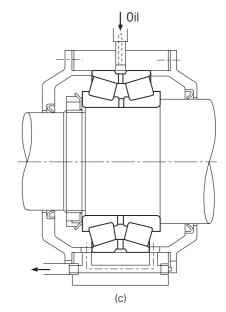
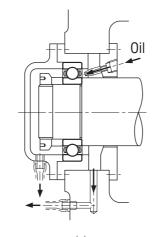



Fig. 11.4 Oil-Bath Lubrication

Fig. 11.6 Splash Lubrication




Fig. 11.7 Circulating Lubrication

(5) Jet Lubrication

Jet lubrication is often used for ultra-high-speed bearings with a $d_m n$ valve (d_m : pitch diameter of rolling element set in mm; n: rotational speed in min⁻¹) exceeding one million, such as the bearings in jet engines. Lubricating oil is sprayed under pressure from one or more nozzles directly into the bearing.

Fig. 11.8 shows an example of ordinary jet lubrication. The lubricating oil is sprayed on the inner ring and cage guide face. In high-speed operation, the air surrounding the bearing rotates with it, causing the oil jet to be deflected. The jetting speed of the oil from the nozzle should be more than 20 % of the circumferential speed of the inner ring outer surface, or cage guide face.

More uniform cooling and a better temperature distribution is achieved using more nozzles for a given amount of oil. The oil should be forcibly discharged so that the agitating resistance of the lubricant can be reduced and the oil can effectively carry away the heat.

(a)

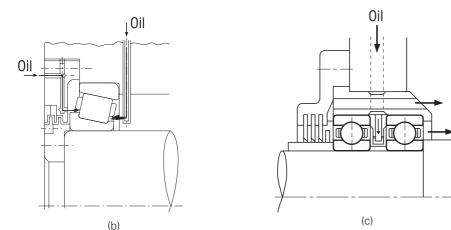


Fig. 11.8 Jet Lubrication

(6) Oil-Mist Lubrication

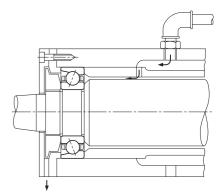
Oil-mist lubrication, or oil fog lubrication, utilizes an oil mist sprayed into a bearing. This method has the following advantages:

(a) Because of the small quantity of oil required, the oil agitation resistance is small, and higher speeds are possible.

(b) Contamination of the vicinity around the bearing is limited because the oil leakage is small.

(c) It is relatively easy to continuously supply fresh oil; therefore, bearing life is extended.

This lubricating method is used for bearings in the highspeed spindles of machine tools, high-speed pumps, roll necks of rolling mills, and so on (see example in Fig. 11.9).


Please consult NSK regarding oil-mist lubrication of large bearings.

(7) Oil-Air Lubricating Method

With the oil-air lubricating method, a very small amount of oil is discharged intermittently by a constant-quantity piston into a pipe carrying a constant flow of compressed air. The oil flows along the wall of the pipe and approaches a constant flow rate.

The major advantages of oil-air lubrication are as follows: (a) The minimum necessary amount of oil is supplied, making this method suitable for high speeds because less heat is generated.

(b) Since oil is fed continuously, bearing temperature remains stable. Also, because of the small amount of oil, there is almost no atmospheric pollution.

(c) Only fresh oil is fed to the bearings, so oil deterioration need not be considered.

(d) Compressed air is constantly fed to the bearings and keeps internal pressure high. This prevents the entry of dust, cutting fluid, etc.

For these reasons, this method is used in the main spindles of machine tools and other high speed-applications (see example in Fig. 11.10).

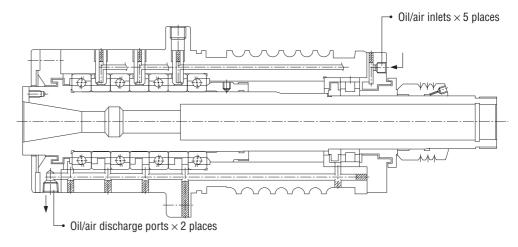


Fig. 11.10 Oil-Air Lubrication

11.3 Lubricants

11.3.1 Lubricating Grease

Grease is a semisolid lubricant consisting of base oil, a thickener, and additives. The main types and general properties of grease are shown in Table 11.2. Note that different brands of the same type of grease may have different properties.

(1) Base Oil

Mineral oils or synthetic oils, such as silicone or diester oil, are often used as the base oil for grease. The lubricating properties of grease depend mainly on the characteristics of its base oil. Therefore, the viscosity of the base oil is just as important when selecting grease as when selecting an oil. Usually, grease made with low viscosity base oils is more suitable for high speeds and low temperatures, while grease made with high viscosity base oils is more suited for high temperatures and heavy loads.

However, the thickener also influences the lubricating properties of grease; therefore, the selection criteria for grease is not the same as for lubricating oil. Moreover, please be aware that ester-based grease will cause acrylic rubber material to swell, and that silicone-based grease will cause silicone-based material to swell.

(2) Thickener

Thickeners for lubricating grease include several types of metallic soaps, inorganic thickeners such as silica gel and bentonite, and heat resisting organic thickeners such as polyurea and fluoric compounds. The type of thickener is closely related to the grease dropping point (1); generally, grease with a high dropping point also has a high temperature capability during operation. However, this type of grease does not have a high working temperature unless the base oil is heat-resistant. The highest possible working temperature for grease should be determined considering the heat resistance of the base oil. The water resistance of grease depends upon the type of thickener. Sodium-soap grease or compound grease containing sodium soap emulsifies when exposed to water or high humidity and therefore cannot be used where moisture is prevalent. Moreover, note that ureabased grease will cause fluorine-based material to deteriorate.

Note (1) The grease dropping point is that temperature at which a grease heated in a specified small container becomes sufficiently fluid to drip.

				diease riopein					
Name (Popular Name)		Lithium Grease		Sodium Grease (Fiber Grease)	Calcium Grease (Cup Grease)	Mixed Base Grease	Complex Base Grease (Complex Grease)		oap Base Grease I-Soap Grease)
Thickener		Li Soap		Na Soap	Ca Soap	Na + Ca Soap, Li + Ca Soap, etc.	Ca Complex Soap, Al Complex Soap, Li Complex Soap, etc.		te, Carbon Black, Fluoric Heat Resistant Organic tc.
Base Oil Properties	Mineral Oil	Diester Oil, Polyatomic Ester Oil	Silicone Oil	Mineral Oil	Mineral Oil	Mineral Oil	Mineral Oil	Mineral Oil	Synthetic Oil (Ester Oil, Polyatomic Ester Oil, Synthetic Hydrocarbon Oil, Silicone Oil, Fluoric Base Oil)
Dropping Point,°C	170 to 195	170 to 195	200 to 210	170 to 210	70 to 90	160 to 190	180 to 300	> 230	> 230
Working Temperatures, °C	-20 to +110	-50 to +130	-50 to +160	-20 to +130	-20 to +60	-20 to +80	-20 to +130	-10 to +130	< +220
Working Speed, %(1)	70	100	60	70	40	70	70	70	40 to 100
Mechanical Stability	Good	Good	Good	Good	Poor	Good	Good	Good	Good
Pressure Resistance	Fair	Fair	Poor	Fair	Poor	Fair to Good	Fair to Good	Fair	Fair
Water Resistance	Good	Good	Good	Poor	Good	Poor for Na Soap Grease	Good	Good	Good
Rust Prevention	Good	Good	Poor	Poor to Good	Good	Fair to Good	Fair to Good	Fair to Good	Fair to Good
Remarks	General- purpose grease used for numerous applications	Good low- temperature and torque characteristics. Often used for small motors and instrument bearings. Monitor for rust caused by insulation varnish.	Mainly used for high temperature applications. Unsuitable for bearings at high and low speeds, under heavy loads, or with numerous sliding-contact areas (roller bearings, etc.)	Long-and-short- fiber types are available. Long- fiber grease is unsuitable for high speeds. Monitor for water and high temperatures.	Extreme-pressure grease containing high viscosity mineral oil and extreme pressure additives (Pb soap, etc.) with high pressure resistance.	Often used for roller bearings and large ball bearings.	Suitable for extreme pressures mechanically stable	for medium to Synthetic-oil recommended temperatures fluoric oil bas	se grease is used o high temperatures. base grease is d for low or high Some silicone and e grease have poor rust d noise characteristics.

Grease Properties

Table 11.2

Note (1) The values listed are percentages of the limiting speeds given in the bearing tables.

(3) Additives

Grease often contains various additives such as antioxidants, corrosion inhibitors, and extreme pressure additives to give it special properties. Extreme pressure additives are recommended for heavy load applications. For long use without replenishment, an antioxidant should be added.

(4) Consistency

Consistency indicates the "softness" of grease. Table 11.3 shows the relation between consistency and operating conditions.

Remark The grease properties shown here can vary between brands.

Table 11.3 Consistency and Working Conditions

Consistency Number	0	1	2	3	4
Consistency(1) 1/10 mm	355 to 385	310 to 340	265 to 295	220 to 250	175 to 205
Working Conditions (Application)	·For centralized oiling ·When fretting is likely to occur	-For centralized oiling -When fretting is likely to occur -For low temperatures	-For general use -For sealed ball bearings	-For general use -For sealed ball bearings -For high temperatures	-For high temperatures -For grease seals

Note (1) Consistency: The depth to which a cone descends into grease when a specified weight is applied, indicated in units of 1/10 mm. The larger the value, the softer the grease.

(5) Mixing Different Types of Grease

In general, different brands of grease must not be mixed. Mixing grease with different types of thickeners may destroy its composition and physical properties. Even if thickeners are of the same type, possible differences in the additive may cause detrimental effects.

11.3.2 Lubricating Oil

The lubricating oils used for rolling bearings are usually highly refined mineral oils or synthetic oils that have a high oil-film strength and superior oxidation and corrosion resistance. When selecting a lubricating oil, the viscosity during operation is important. If the viscosity is too low, a proper oil film does not form and abnormal wear and seizure may occur. On the other hand, if the viscosity is too high, excessive viscous resistance may cause heating or energy loss. In general, low viscosity oils should be used at high speed; however, the viscosity should increase with

increasing bearing load and size

Table 11.4 gives generally recommended viscosities for bearings under normal operating conditions. Fig. 11.11 shows the relationship between oil temperature and viscosity, and selected lubricating oils are shown in Table 11.5.

Table 11. 4 Bearing Types and Proper Viscosity of Lubricating Oils

Bearing Type	Proper Viscosity at Operating Temperature
Ball Bearings and Cylindrical Roller Bearings	Higher than $13 \mathrm{mm}^2/\mathrm{s}$
Tapered Roller Bearings and Spherical Roller Bearings	Higher than $20 mm^2/s$
Spherical Thrust Roller Bearings	Higher than $32 mm^2/s$

Remark 1mm²/s=1cSt (centistokes)

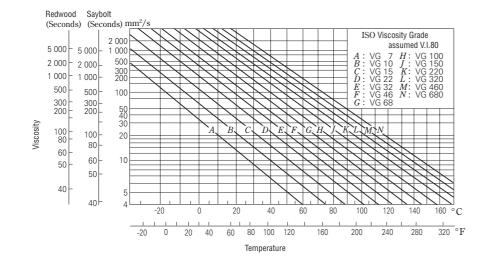


Fig. 11.11 Temperature-Viscosity Chart

Oil Replacement Intervals

Oil replacement intervals depend on operating conditions and oil quantity.

In cases where the operating temperature is less than 50 °C and environmental conditions are good with little dust, the oil should be replaced approximately once a year. However, in cases where the oil temperature is near 100 °C, the oil must be changed at least once every three months.

If moisture may enter or if foreign matter may be mixed in the oil, then the oil replacement interval must be shortened.

Do not mix different brands of oil as, like grease, their composition and physical properties may be negatively affected.

Table 11. 5 Example Lubricating Oils for Bearing Operating Conditions

Operating Temperature	Speed	Light or Normal Load	Heavy or Shock Load
-30 to 0 °C	Less than limiting speed	ISO VG 15, 22, 32 (refrigerating machine oil)	_
	Less than 50% of limiting speed	ISO VG 32, 46, 68 (bearing oil, turbine oil)	ISO VG 46, 68, 100 (bearing oil, turbine oil)
0 to 50 °C	50 to 100% of limiting speed	ISO VG 15, 22, 32 (bearing oil, turbine oil)	ISO VG 22, 32, 46 (bearing oil, turbine oil)
	More than limiting speed	ISO VG 10, 15, 22 (bearing oil)	-
	Less than 50% of limiting speed	ISO VG 100, 150, 220 (bearings oil)	ISO VG 150, 220, 320 (bearing oil)
50 to 80 °C	50 to 100% of limiting speed	ISO VG 46, 68, 100 (bearing oil, turbine oil)	ISO VG 68, 100, 150 (bearing oil, turbine oil)
	More than limiting speed	ISO VG 32, 46, 68 (bearing oil, turbine oil)	_
	Less than 50% of limiting speed	ISO VG 320, 460 (bearing oil)	ISO VG 460, 680 (bearing oil, gear oil)
80 to 110 °C	50 to 100% of limiting speed	ISO VG 150, 220 (bearing oil)	ISO VG 220, 320 (bearing oil)
	More than limiting speed	ISO VG 68, 100 (bearing oil, turbine oil)	_

Remarks 1. Use the values listed in the bearing tables for limiting speeds.

Refer to Refrigerating Machine Oils (JIS K 2211), Bearing Oils (JIS K 2239), Turbine Oils (JIS K 2213), and Gear Oils (JIS K 2219) for more information.

 If the operating temperature is near the high end of the temperature range listed in the left column, select a high-viscosity oil.

4. If the operating temperature is lower than -30 °C or higher than 110 °C, please consult NSK.

11.4 Technical Data

11. 4. 1 Brands and Properties of Lubricating Grease

		Table 11. 6 Brands of	Lubricating Grease				
Brand	Thickener	Base Oil(s)	Dropping Point (°C)	Consistency	Working Temperature Range(¹)(°C)	Pressure Resistance	Usable Limit Compared to Listed Limiting Speed (Grease)(²)(%)
EA3 GREASE	Urea (3)	Poly-a-olefin oil	≧260	230	-40 to +150	Fair	100
EA5 GREASE	Urea (3)	Poly-a-olefin oil	≧260	251	-40 to +160	Good	60
EA6 GREASE	Urea (3)	Poly-a-olefin oil	≧260	220	-40 to +160	Fair	70
EA7 GREASE	Urea (3)	Poly-a-olefin oil	≧260	243	-40 to +160	Fair	100
EA9 GREASE	Urea (3)	Poly-a-olefin oil	≧260	314	-40 to +140	Fair	100
ENS GREASE	Urea (3)	Polyol ester oil (4)	≧260	264	-40 to +160	Poor	100
ECE GREASE	Lithium	Poly-a-olefin oil	≧260	235	-10 to +120	Poor	100
DOW CORNING(R) SH 44 M GREASE	Lithium	Silicone oil (5)	210	260	-30 to +130	Poor	60
NS HI-LUBE	Lithium	Ester oil + Diester oil (4)	192	250	-40 to +130	Poor	100
LG2 GREASE	Lithium	Poly- α -olefin oil + Mineral oil	201	199	-20 to +70	Poor	100
LGU GREASE	Urea (3)	Poly-a-olefin oil	≧260	201	-40 to +120	Fair	70
EMALUBE 8030	Urea (3)	Mineral oil	≧260	280	0 to +130	Good	60
KP1 GREASE	PTFE	Perfluoropolyether oil	Not applicable	290	-30 to +200	Fair	60
SHELL ALVANIA GREASE S2	Lithium	Mineral oil	181	275	-10 to +110	Fair	70
SHELL ALVANIA GREASE S3	Lithium	Mineral oil	182	242	-10 to +110	Fair	70
SHELL SUNLIGHT GREASE 2	Lithium	Mineral oil	200	274	-10 to +110	Fair	70
WPH GREASE	Urea (3)	Poly-α-olefin oil	259	240	-40 to +150	Fair	70
NIGLUBE RSH	Sodium Complex	Glycol oil	≧260	270	-20 to +140	Fair	60
PALMAX RBG	Lithium Complex	Mineral oil	216	300	-10 to +130	Good	70
MULTEMP PS No.2	Lithium	Poly-a-olefin oil + Diester oil (4)	190	275	-50 to +110	Poor	100
MOLYKOTE(R) FS-3451GREASE	PTFE	Fluorosilicone oil (5)	Not applicable	285	0 to +180	Fair	70
UME GREASE	Urea (3)	Mineral oil	≧260	272	-10 to +130	Fair	70
RW1 GREASE	Urea (3)	Mineral oil	≧260	300	-10 to +130	Fair	70
HA1 GREASE	Urea (3)	Ether oil	≧260	290	-40 to +160	Fair	70
HA2 GREASE	Urea (3)	Ether + Poly-α-olefin oil	≧260	295	-30 to +170	Fair	70
KLUBERSYNTH HB 72-52	Urea (3)	Ester oil (4)	250	295	-30 to +160	Fair	70
NOXLUB KF0921	PTFE	Perfluoropolyether oil	Not applicable	280	-40 to +200	Fair	70
ECH GREASE	Carbon Black	Perfluoropolyether oil	Not applicable	205	-30 to +260	Fair	60
FWG GREASE	Urea (3)	Mineral oil + Poly-α-olefin oil	≧260	268	-30 to +150	Fair	70
HT1 GREASE	Urea (3)	Poly-a-olefin oil	≧260	236	-40 to +150	Fair	100
ARAPEN RB320	Lithium-Calcium	Mineral oil	177	305	-10 to +80	Fair	70
SHELL GADUSRAIL S4 HIGH SPEED EUFR	Lithium	Mineral oil	188	266	-10 to +110	Fair	100

Notes (1) If grease will be used at the upper or lower limit of the temperature range or in a special environment such as a

vacuum, please consult NSK.

(2) For short-term operation or when adequate cooling is provided, grease may be used at speeds exceeding the above limits provided the supply of grease is appropriate.
(3) Urea-based grease causes fluorine-based material to deteriorate.
(4) Ester-based grease causes acrylic rubber material to swell.
(5) Silicone-based grease causes silicone-based material to swell.

12. BEARING MATERIALS
12.1 Materials for Bearing Rings and Rolling Elements A 244
12.2 Cage Materials A 245
12.3 Characteristics of Bearing, Shaft, and Housing Materials
12.4 Technical Data A 248
12.4.1 Comparison of National Standards of Rolling Bearing Steel
12.4.2 Long-Life Bearing Steel (NSK Z Steel) A 250
12.4.3 Dimensional Stability of Bearing Steel A 252
12.4.4 Fatigue Analysis A 254
(1) Measurement of Fatigue Degree A 254
(2) Surface and Subsurface Fatigue
12.4.5 Hi-TF Bearings and Super-TF Bearings
(1) Hi-TF Bearings, Super-TF Bearings, and TF Technology
(2) TF Technology
(3) Material Properties of Hi-TF Bearings and Super-TF Bearings
(4) Service Life Under Contaminated Lubrication Conditions
(5) Service Life Under Clean Lubrication Conditions A 260
(6) Service Life Under Boundary Lubrication Conditions A 261
(7) Wear and Seizure Resistance A 261
(8) Heat Resistance A 261
12.4.6 Physical Properties of Representative Polymers Used as Bearing Material
12.4.7 Characteristics of Nylon Material for Cages A 264
12.4.8 Heat-Resistant Resin Materials for Cages A 266

12. BEARING MATERIALS

Bearing rings and rolling elements of rolling bearings are subjected to repetitive high pressure with a small amount of sliding. Tension, compression, and sliding contact with the rolling elements and either or both of the bearing rings impact the cage.

Therefore, the materials used for the rings, rolling elements, and cages require the following characteristics:

Material characteristics required for _ bearing rings and rolling elements	High rolling contact fatigue strength High hardness High wear resistance High dimensional stability High mechanical strength	Characteristics — required for cage material
	strength	

Other necessary characteristics, such as ease of production, shock and heat resistance, and corrosion resistance, are required depending on individual applications.

12.1 Materials for Bearing Rings and Rolling Elements

Primarily, high-carbon-chromium bearing steel (Table 12.1) is used for the bearing rings and rolling elements. Most NSK bearings are made of SUJ2 steel, while larger bearings generally use SUJ3 (additional types are listed in Table 12.1). The chemical composition of SUJ2 is approximately the same as AISI 52100. DIN 100 Cr6. and BS 535A99. Bearings subjected to very severe shock loads often utilize carburized low-carbon alloy steels such as chrome steel, chrome-molybdenum steel, nickelchrome-molybdenum steel, etc. Such steels, when they are carburized to the proper depth and have sufficient surface hardness, are more shock-resistant than normal, through-hardened bearing steels because of their softer energy-absorbing core. The chemical composition of common carburized bearing steels is listed in Table 12.2.

Table 12.1 Chemical Composition of High-Carbon-Chromium Bearing Steel (Major Elements)

Standard	Designation -	Chemical Composition (%)							
Stanuaru	Designation	С	Si	Mn	Р	S	Cr	Mo	
JIS G 4805	SUJ 2	0.95 to 1.10	0.15 to 0.35	Less than 0.50	Less than 0.025	Less than 0.025	1.30 to 1.60	-	
	SUJ 3	0.95 to 1.10	0.40 to 0.70	0.90 to 1.15	Less than 0.025	Less than 0.025	0.90 to 1.20	-	
	SUJ 4	0.95 to 1.10	0.15 to 0.35	Less than 0.50	Less than 0.025	Less than 0.025	1.30 to 1.60	0.10 to 0.25	
ASTM A 295	52100	0.93 to 1.05	0.15 to 0.35	0.25 to 0.45	Less than 0.025	Less than 0.015	1.35 to 1.60	Less than 0.10	

Table 12.2 Chemical Composition of Carburizing Bearing Steels (Major Elements)

Standard	Decignation	Chemical Composition (%)							
Stanuaru	Designation	С	Si	Mn	Р	S	Ni	Cr	Mo
JIS G 4052	SCr 420 H	0.17 to 0.23	0.15 to 0.35	0.55 to 0.95	Less than 0.030	Less than 0.030	Less than 0.25	0.85 to 1.25	_
	SCM 420 H	0.17 to 0.23	0.15 to 0.35	0.55 to 0.95	Less than 0.030	Less than 0.030	Less than 0.25	0.85 to 1.25	0.15 to 0.35
	SNCM 220 H	0.17 to 0.23	0.15 to 0.35	0.60 to 0.95	Less than 0.030	Less than 0.030	0.35 to 0.75	0.35 to 0.65	0.15 to 0.30
	SNCM 420 H	0.17 to 0.23	0.15 to 0.35	0.40 to 0.70	Less than 0.030	Less than 0.030	1.55 to 2.00	0.35 to 0.65	0.15 to 0.30
JIS G 4053	SNCM 815	0.12 to 0.18	0.15 to 0.35	0.30 to 0.60	Less than 0.030	Less than 0.030	4.00 to 4.50	0.70 to 1.00	0.15 to 0.30
ASTM A 534	8620 H	0.17 to 0.23	0.15 to 0.35	0.60 to 0.95	Less than 0.025	Less than 0.015	0.35 to 0.75	0.35 to 0.65	0.15 to 0.25
	4320 H	0.17 to 0.23	0.15 to 0.35	0.40 to 0.70	Less than 0.025	Less than 0.015	1.55 to 2.00	0.35 to 0.65	0.20 to 0.30
	9310 H	0.07 to 0.13	0.15 to 0.35	0.40 to 0.70	Less than 0.025	Less than 0.015	2.95 to 3.55	1.00 to 1.40	0.08 to 0.15

Table 12.3 Chemical Composition of High-Speed Steel for Bearings Used at High Temperatures

Ciandard	Designation					Ch	emical Com	position (%))				
Stanuaru	Designation	С	Si	Mn	Р	S	Cr	Mo	V	Ni	Cu	Co	W
AISI	M50	0.77 to 0.85	Less than 0.25	Less than 0.35	Less than 0.015	Less than 0.015	3.75 to 4.25	4.00 to 4.50	0.90 to 1.10	Less than 0.10	Less than 0.10	Less than 0.25	Less than 0.25

NSK uses highly pure vacuum-degassed bearing steel containing minimal oxygen, nitrogen, and hydrogen compound impurities. The rolling fatigue life of bearings has been remarkably improved using this material combined with the appropriate heat treatment. For special-purpose bearings, high-temperature bearing steel, which has superior heat resistance, and stainless steel with good corrosion resistance may be used. The chemical composition of these special materials are given in Tables 12.3 and 12.4.

12.2 Cage Materials

The main types of low carbon steels used for pressed cages are shown in Table 12.5. Depending on the application, brass or stainless steel may be used. For machined cages, high-strength brass (Table 12.6) or carbon steel (Table 12.5) is used. Synthetic resin is also sometimes used.

Table 12.4	Chemical Composition of Stainless Steel for
	Rolling Bearing (Major Elements)

Standard	Designation	Chemical Composition (%)								
	Designation	С	Si	Mn	Р	S	Cr	Mo		
JIS G 4303	SUS 440 C	0.95 to 1.20	Less than 1.00	Less than 1.00	Less than 0.040	Less than 0.030	16.00 to 18.00	Less than 0.75		
SAE J 405	51440 C	0.95 to 1.20	Less than 1.00	Less than 1.00	Less than 0.040	Less than 0.030	16.00 to 18.00	Less than 0.75		

Table 12.5 Chemical Composition of Steel Sheet and Carbon Steel for Cages (Major Elements)

Classification	Standard	Designation	Chemical Composition (%)						
GIASSINGALIUN	Stanuaru	Designation	С	Si	Mn	Р	S		
Steel sheet and	JIS G 3141	SPCC	Less than 0.12	_	Less than 0.50	Less than 0.04	Less than 0.045		
strip for pressed	BAS 361	SPB 2	0.13 to 0.20	Less than 0.30	0.25 to 0.60	Less than 0.03	Less than 0.030		
cages	JIS G 3311	S 50 CM	0.47 to 0.53	0.15 to 0.35	0.60 to 0.90	Less than 0.03	Less than 0.035		
Carbon steel for machined cages	JIS G 4051	S 25 C	0.22 to 0.28	0.15 to 0.35	0.30 to 0.60	Less than 0.03	Less than 0.035		

Remark BAS refers to the Japanese Bearing Association Standard.

Table 12.6 Chemical Composition of High-Strength Brass for Machined Cages

		Chemical Composition (%)									
Standard	Designation	ation Cu	Zn	Mn	Fe	Al	Sn	Ni	Impurities		
						Al	50		Pb	Si	
JIS H 5120	CAC301 (HBsC 1)	55.0 to 60.0	33.0 to 42.0	0.1 to 1.5	0.5 to 1.5	0.5 to 1.5	Less than 1.0	Less than 1.0	Less than 0.4	Less than 0.1	
JIS H 3250	C 6782	56.0 to 60.5	Residual	0.5 to 2.5	0.1 to 1.0	0.2 to 2.0	_	_	Less than 0.5	_	

Remark Improved HBsC 1 is also used.

12.3 Characteristics of Bearing, Shaft, and Housing Materials

Rolling bearings must be able to support high loads, run at high speeds, and endure long periods of operation. It is also important to know the material characteristics of the shaft and housing to maximize bearing performance. Physical and mechanical properties of typical bearing, shaft, and housing materials are shown in Table 12.7.

	Material	Heat Treatment	Density g/cm³	Specific Heat kJ/(kg·K)	Thermal Conduc- tivity W/(m·K)	Electric Resistance $\mu \Omega \cdot cm$	Linear Expansion Coeff. $(0 \text{ to } 100 ^{\circ}\text{C}) \times 10^{-6}/^{\circ}\text{C}$	Young's Modulus MPa {kgf/mm²}	Yield Point MPa {kgf/mm²}	Tensile Strength MPa {kgf/mm²}	Elong- ation %	Hardness HB	Remarks
	SUJ2	Quenching, tempering	7.83		46	22	12.5	208 000 420 {43 {21 200} 882 {90	1 370 {140}	1 570 to 1 960 {160 to 200}	0.5 Max.	650 to 740	High-carbon- chrome bearing
	SUJ2	Spheroidizing annealing	7.86	0.47			11.9		420 {43}	647 {66}	27	180	steel No. 2
	SCr420	Quenching, low temp tempering	7.83	0.47	48	21	12.8		882 {90}	1 225 {125}	15	370	Chrome steel
g	SAE4320 (SNCM420)	Quenching, low temp tempering	1.03		44	20	11.7		902 {92}	1 009 {103}	16	**293 to 375	Nickel- chrome-
Bearing	SNCM815	Quenching, low temp tempering	7.89		40	35	_		_	*1 080 {110} Min.	*12 Min.	*311 to 375	molybde- num steel
В	SUS440C	Quenching, low temp tempering	7.68	0.46	24	60	10.1	200 000 {20 400}	1 860 {190}	1 960 {200}	_	**580	Martensitic stainless steel
	SPCC	Annealing		0.47	59	15	11.6	206 000	—	*275 {28} Min.	*32 Min.	-	Cold rolled steel plate
	S25C	Annealing	7.86	0.48	50	17	11.8	{21 000}	323 {33}	431 {44}	33	120	Carbon steel for machine structures
	CAC301 (HBsC1)	-	8.5	0.38	123	6.2	19.1	103 000 {10 500}	_	*431 {44} Min.	*20 Min.	-	High-tension brass
	S45C	Quenching, 650 °C tempering		47	47	18	12.8	207 000 {21 100}	440 {45}	735 {75}	25	217	Carbon steel for machine structures
	SCr430	Quenching, 520 to 620 °C fast cooling		0.48		22	12.5		*637 {65} Min.	*784 {80} Min.	*18 Min.	*229 to 293	Chrome
	SCr440	Quenching, 520 to 620 °C fast cooling	7.83		45	23	12.0	208 000 {21 100}	*784 {80} Min.	*930 {95} Min.	*13 Min.	*269 to 331	steel
Shaft	SCM420	Quenching, 150 to 200 °C air cooling	1.83		48	21	12.8	(21100)		*930 {95} Min.	*14 Min.	*262 to 352	Chrome- molybde- num steel
S	SNCM439	Quenching, 650 °C tempering		0.47	38	30	11.3	207 000 {21 100}	920 {94}	1 030 {105}	18	320	Nickel- chrome- molybde- num steel
	SC46	Normalizing	—	_	—	—	—	206 000 {21 000}	294 {30}	520 {53}	27	143	Low-carbon cast steel
	SUS420J2	1 038 °C oil cooling, 400 °C air cooling	7.75	0.46	22	55	10.4	200 000 {20 400}	1 440 {147}	1 650 {168}	10	400	Martensitic stainless steel
	FC200	Casting	7.3	0.50	43	—		98 000 {10 000}	—	*200 {20} Min.	—	*217 Max.	Gray cast iron
	FCD400	Casting	7.0	0.48	20	_	11.7	169 000 {17 200}	*250 {26} Min.	*400 {41} Min.	*12 Min.	*201 Max.	Spheroidal graphite cast iron
ß	A1100	Annealing	2.69	0.90	222	3.0	23.7	70 600 {7 200}	34 {3.5}	78 {8}	35	-	Pure aluminum
Housing	AC4C	Casting	2.68	0.88	151	4.2	21.5	72 000 {7 350}	88 {9}	167 {17}	7	—	Aluminum alloy for sand casting
	ADC10	Casting	2.74	0.96	96	7.5	22.0	71 000 {7 240}	167 {17}	323 {33}	4	—	Aluminum alloy for die casting
	SUS304	Annealing	8.03	0.50	15	72	15.7 to 16.8	193 000 {19 700}	245 {25}	588 {60}	60	150	Austenitic stainless steel

Table 12.7 Physical and Mechanical Properties of Bearing, Shaft, and Housing Materials

Note * JIS standard or reference value. ** Though the Rockwell C scale is generally Remark Proportional limits of SUJ2 and SCr420

used, Brinel hardness is shown for comparison.

are 833 MPa {85 kgf/mm²} and 440 MPa {45 kgf/mm²} respectively.

BEARING MATERIALS

12.4 Technical Data

12.4.1 Comparison of National Standards of Rolling Bearing Steel

The Dimension Series of rolling bearings as mechanical elements have been standardized internationally, and the material to be used for them specified in ISO 683/17 Heat-treated steels, alloy steels, and free-cutting steels--Part 17: Ball and roller bearing steels. However, materials are also standardized according to the standards of individual countries and, in some cases, manufacturer modifications.

As internationalization continues, more references to these steel standards will be made. Some applicable standards and their features are described and compared in Tables 12.8 and 12.9.

		Table 12.8	Applicabl	e National Sta	andards and (Chemical Cor	nposition of H	igh-Carbon-	Chrome Bearing	g Steel
JIS	ASTM	Other Major			Chemical Co	mposition (%)			Application	Damaarka
G 4805	ASIM	National Standards	С	Si	Mn	Cr	Mo	Others	Application	Remarks
SUJ2	—	—	0.95 to 1.10	0.15 to 0.35	≦0.50	1.30 to 1.60	≦0.08	*1	Typical steel	Equivalent to each
—	A 295-89 52100	_	0.93 to 1.05	0.15 to 0.35	0.25 to 0.45	1.35 to 1.60	≦0.10	P≦0.025 S≦0.015	for small- and medium- size bearings	other though there are slight differences in the ranges.
—	-	100Cr6 (DIN)	0.90 to 1.05	0.15 to 0.35	0.25 to 0.40	1.40 to 1.65	—	_	0120 boarnigo	the ranges.
—	—	100C6 (NF)	0.95 to 1.10	0.15 to 0.35	0.20 to 0.40	1.35 to 1.60	≦0.08	P≦0.030 S≦0.025		
—	-	535A99 (BS)	0.95 to 1.10	0.10 to 0.35	0.40 to 0.70	1.20 to 1.60	_	*1		
SUJ3	—	—	0.95 to 1.10	0.40 to 0.70	0.90 to 1.15	0.90 to 1.20	≦0.08	*1	For large-size	SUJ3 is equivalent to
—	A 485-03 Grade 1	_	0.90 to 1.05	0.45 to 0.75	0.90 to 1.20	0.90 to 1.20	≦0.10	P≦0.025 S≦0.015	bearings	Grade 1. Grade 2 has better guenching
—	A 485-03 Grade 2	_	0.85 to 1.00	0.50 to 0.80	1.40 to 1.70	1.40 to 1.80	≦0.10	P≦0.025 S≦0.015		capability
SUJ4	_	_	0.95 to 1.10	0.15 to 0.35	≦0.50	1.30 to 1.60	0.10 to 0.25	*1	Rarely used	Better quenching capability than SUJ2
SUJ5	_	—	0.95 to 1.10	0.40 to 0.70	0.90 to 1.15	0.90 to 1.20	0.10 to 0.25	*1	For extra large	Though Grade 3 is
—	A 485-03 Grade 3	_	0.95 to 1.10	0.15 to 0.35	0.65 to 0.90	1.10 to 1.50	0.20 to 0.30	P≦0.025 S≦0.015	bearings and thin-walled bearings	equivalent to SUJ5, quenching capability of Grade 3 is better than SUJ5.

Note *1: $P \le 0.025$, $S \le 0.025$

Remark ASTM: Standard of American Society

of Testing Materials, DIN: German Standard, NF: French Standard, BS: British Standard

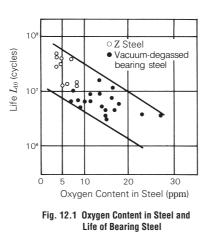
Table 12.9 JIS and ASTM Standards and Chemical Composition of Carburizing Bearing Steel

JIS	ASTM				Chemical Cor	mposition (%)			Application	Demostre
G 4052 G 4053	A 534-90	С	Si	Mn	Ni	Cr	Мо	Others	Application	Remarks
SCr420H	_	0.17 to 0.23	0.15 to 0.35	0.55 to 0.95	≦0.25	0.85 to 1.25	_	*2	For small	Similar steel type
—	5120H	0.17 to 0.23	0.15 to 0.35	0.60 to 1.00	—	0.60 to 1.00	—	*3	bearings	
SCM420H	_	0.17 to 0.23	0.15 to 0.35	0.55 to 0.95	≦0.25	0.85 to 1.25	0.15 to 0.35	*2	For small bearings Capability of 4118H is inferior to SCM420H	
-	4118H	0.17 to 0.23	0.15 to 0.35	0.60 to 1.00	—	0.30 to 0.70	0.08 to 0.15	*3		
SNCM220H	_	0.17 to 0.23	0.15 to 0.35	0.60 to 0.95	0.35 to 0.75	0.35 to 0.65	0.15 to 0.30	*2	For small	Equivalent, though
—	8620H	0.17 to 0.23	0.15 to 0.35	0.60 to 0.95	0.35 to 0.75	0.35 to 0.65	0.15 to 0.25	*3	bearings	there are slight differences
SNCM420H	_	0.17 to 0.23	0.15 to 0.35	0.40 to 0.70	1.55 to 2.00	0.35 to 0.65	0.15 to 0.30	*2	For medium	Equivalent, though
—	4320H	0.17 to 0.23	0.15 to 0.35	0.40 to 0.70	1.55 to 2.00	0.35 to 0.65	0.20 to 0.30	*3	bearings	there are slight differences
SNCM815	_	0.12 to 0.18	0.15 to 0.35	0.30 to 0.60	4.00 to 4.50	0.70 to 1.00	0.15 to 0.30	*2	For large	Similar steel type
	9310H	0.07 to 0.13	0.15 to 0.35	0.40 to 0.70	2.95 to 3.55	1.00 to 1.45	0.08 to 0.15	*3	bearings	

Note *2: $P \le 0.030$, $S \le 0.030$ *3: $P \le 0.025$, $S \le 0.015$

A 248

BEARING MATERIALS


12.4.2 Long-Life Bearing Steel (NSK Z Steel)

The rolling fatigue life of high-carbon chrome bearing steel (SUJ2, SAE52100) used for rolling bearings is greatly affected by non-metallic inclusions. Non-metallic inclusions are roughly divided into threetypes: sulfide, oxide, and nitride. A long-term life test showed that oxide non-metallic inclusions exert a particularly adverse effect on rolling fatigue life.

Fig. 12.1 shows the parameter (oxygen content) indicating the amount of oxide non-metallic inclusions as it relates to life.

The oxygen amount in steel was minimized as much as possible by reducing impurities (Ti, S) substantially, thereby achieving a decrease in oxide non-metallic inclusions. The resulting long-life steel is known as Z steel. Z steel is an achievement of improved steelmaking facilities and operating conditions made possible by cooperation with steel makers using data from numerous life tests. A graph of the oxygen content in steel over the last 25 years is shown in Fig. 12.2.

The results of a life test with the sample materials in Fig. 12.2 are shown in Fig. 12.3. Life tends to become longer with decreasing oxygen content in steel. High-quality Z steel has a life span which is about 1.8 times longer than that of conventional degassed steel.

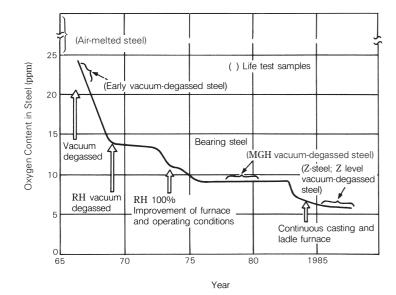
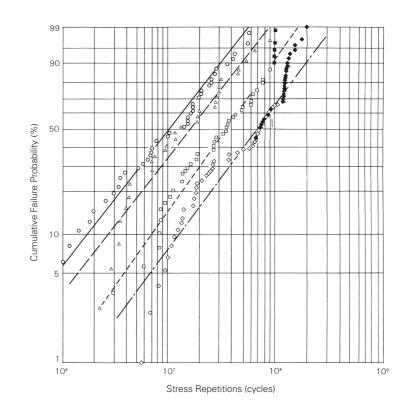
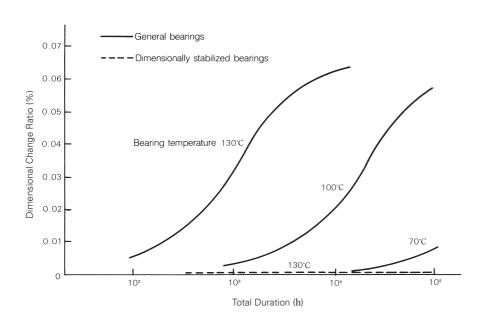



Fig. 12.2 Change in Oxygen Content of NSK Bearing Steels

Classification	Test quantity	Failured quantity	Weibull slope	L_{10}	L_{50}
○ Air-melted steel	44	44	1.02	1.67×10^{6}	1.06×10^{7}
riangle Vacuum-degassed steel	30	30	1.10	2.82×10 ⁶	1.55×10 ⁷
MGH vacuum- degassed steel	46	41	1.16	6.92×10 ⁶	3.47×10 ⁷
\diamondsuit Z steel	70	39	1.11	1.26×107	6.89×10 ⁷

Remark Testing of bearings marked with **and had** not yet completed.

Fig. 12.3 Bearing Steel Life Test Results


12.4.3 Dimensional Stability of Bearing Steel

Sectional changes or changes in the dimensions of rolling bearings over time is called aging deformation. When the inner ring develops expansion due to such deformation, there is a resulting decrease in the interference between the shaft and inner ring. This becomes one of the causes of inner ring creep. Creep (a phenomenon where the shaft and inner ring slip mutually) causes the bearing to generate excess heat that may result in seizure, resulting in critical damage to the entire machine. Consequently, appropriate measures must be taken against aging deformation of the bearing of phenomenon when the application.

Aging deformation of bearings may be attributed to secular thermal decomposition of retained austenite in steel after heat treatment. The bearing develops gradual expansion along with phase transformation. The dimensional stability of the bearings, therefore, varies in accordance with the relative relationship between tempering during heat treatment and the bearing's operating temperature. Dimensional stability increases with rising tempering temperature while retained austenite decomposition gradually expands as the bearing's operating temperature rises.

Fig. 12.4 shows how temperature influences the bearing's dimensional stability. The right side of the figure shows the interference between the inner ring and shaft for various shaft tolerance classes as percentages of the shaft diameter. As is evident from Fig. 12.4, dimensional stability becomes more unfavorable as the bearing's temperature rises. Under these conditions, the interference between the shaft and inner ring of a general bearing is expected to decrease gradually. In this view, loosening of the fit surface must be prevented by using a bearing that has undergone a dimensional stabilization treatment.

When bearing temperature is high, there is a possibility of inner ring creep. Please contact NSK beforehand in order to select an appropriate bearing.

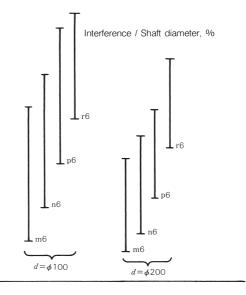
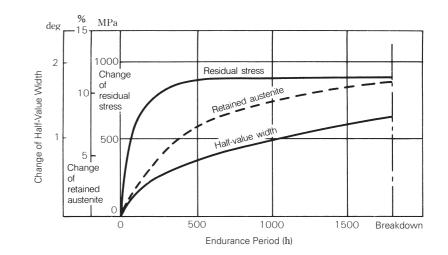
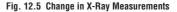


Fig. 12.4 Bearing Temperature and Dimensional Change Ratio

12.4.4 Fatigue Analysis


In order to fully predict the fatigue life of rolling bearings and estimate residual life, knowledge of all fatigue breakdown phenomena of bearings is essential. Unfortunately, this means it will take some time before we reach a stage enabling perfect prediction and estimation. However, rolling fatigue proceeds under compressive stress at the contact point and is known to cause material changes until breakdown occurs. In many cases, it is possible to estimate the degree of fatigue in bearings by detecting this material change. However, this estimation method is not effective in cases where defects in the raceway surface cause premature cracking or where chemical corrosion occurs on the raceway. In these two cases, flaking progresses ahead of material change.


(1) Measurement of Fatigue Degree

The progress of fatigue in a bearing can be determined by using an X-ray to measure changes in residual stress, diffraction half-value width, and amount of retained austenite.

These values change as fatigue progresses as shown in Fig. 12.5. As residual stress grows early and approaches a saturation value, it can be used to detect extremely small fatigue. For large fatigue, change of the diffraction half-value width and retained austenite amount correlate with the progress of fatigue. These measurements are consolidated into one parameter (fatigue index) to determine a relationship with the endurance test period of a bearing.

Measured values were collected by carrying out endurance tests with many ball, tapered roller, and cylindrical roller bearings under various loads and lubrication conditions. Simultaneously, measurements were made on bearings used in actual machines. Fig. 12.6 summarizes the data. Variance is considerable, reflecting the complexity of fatigue. Nevertheless, there is a correlation between the fatigue index and the endurance test period or operating hours. The degree of fatigue can be handled quantitatively, albeit with some uncertainty. The description of "subsurface fatigue" in Fig. 12.6 applies when fatigue is governed by internal shearing stress. On the other hand, "surface fatigue" is correlated with earlier and more severe fatigue resulting from contamination or breakdown of the lubricating oil film.

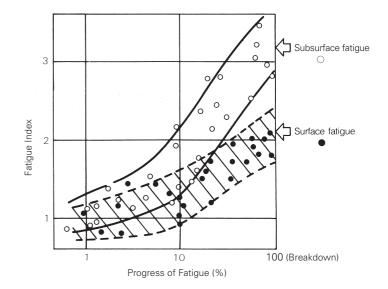


Fig. 12.6 Fatigue Progress and Fatigue Index

(2) Surface and Subsurface Fatigue

Rolling bearings have an extremely smooth finish surface and enjoy relatively satisfactory lubrication conditions. Generally, internal shearing stress below the rolling surface governs the failure of a bearing. When shearing stress caused by rolling contact reaches a maximum level at a certain depth below the surface, a crack (the origin of a breakdown) occurs under the surface. When the raceway is broken due to such subsurface fatigue, the fatigue index measured by depth increases according to the theoretical calculation of shearing stress, as evident from the example ball bearing shown in Fig. 12.7. The fatigue pattern shown in Fig. 12.7 usually occurs when lubrication conditions are satisfactory and a sufficiently thick oil film is present at rolling contact points. The basic dynamic load rating described in this catalog is determined using data from bearing failures according to the above internal fatigue pattern. Fig. 12.8 shows an example cylindrical roller bearing with an unsatisfactory oil film subjected to an endurance test. It is evident that the amount of surface fatigue increases much earlier than indicated by the calculated life.

In this test, all bearings failed before subsurface fatigue became apparent. Thus, bearing failure due to surface fatigue is mostly attributed to lubrication conditions such as insufficient oil film due to excessively low oil viscosity or entry of foreign material or moisture into the lubricant. Therefore, bearing failure induced by surface fatigue occurs before that of subsurface fatigue in most bearing applications, even though subsurface fatigue is the metric used to determine the original life.

Fatigue analysis has shown that bearings used in actual machines overwhelmingly show the surface fatigue pattern of failure instead of the subsurface pattern.

Knowing the distribution of the fatigue index of bearings in use leads to an increased understanding of residual life, lubrication, and load conditions.

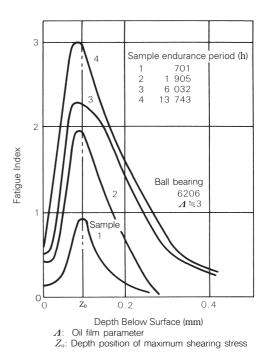


Fig. 12.7 Progress of Subsurface Fatigue

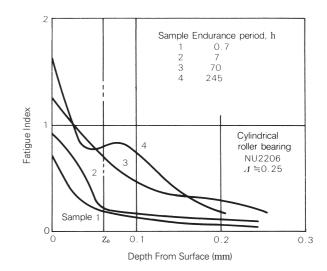
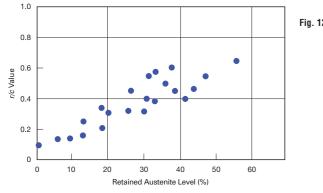


Fig. 12.8 Progress of Surface Fatigue

12.4.5 Hi-TF Bearings and Super-TF Bearings

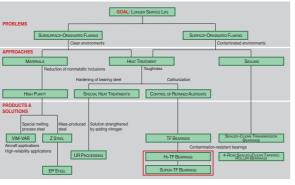
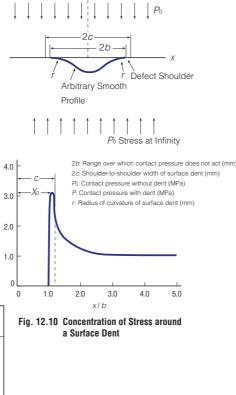

(1) Hi-TF Bearings, Super-TF Bearings, and TF Technology

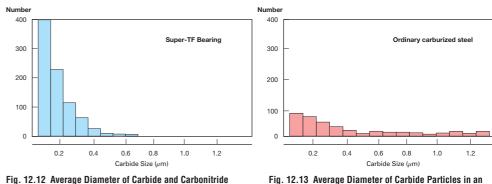
In its quest for longer bearing service life, NSK has spent many years analyzing the mechanisms of fatigue in bearings, researching and developing materials and heat treatment processes, and optimizing for operating conditions. The range of approaches to achieving longer service life taken by our research team is shown in Fig. 12.9. Technology incorporated in our Hi-TF bearings and Super-TF bearings is designed to maximize service life under conditions where bearings are subject to surfaceoriginated flaking.

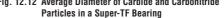
(2) TF Technology

Bearings may be required to operate under clean or dirty conditions; under dirty conditions, their lubricating oil is easily contaminated. Metal particles or casting sand in the lubricating oil make dents in the contact surfaces. As shown in Fig. 12.10, stress is concentrated around these dents and eventually leads to cracking and to surface-originated flaking. The concentration of stress around a dent is expressed by the equation $[P/P_0 \propto (r/c)^{-0.24}]$, where "r" is the radius at the shoulder of the dent and "2c" is the shoulder-to-shoulder width of the dent. The greater the value of "r/c", the smaller the stress concentration and the longer the service life of the bearing.

NSK is a world leader in the research and development of materials that reduce the concentration of stress around surface dents. As shown in Fig. 12.11, our work has revealed that a high level of retained austenite is an extremely effective means of maximizing the r/c value around surface dents in the bearing material. TF technology is a unique heat treatment process developed by NSK to optimize the level of retained austenite in bearing materials.


Fig. 12.9 Approaches to Achieving Longer Service Life in Bearings



(3) Material Properties of Hi-TF Bearings and Super-TF Bearings

NSK has developed Hi-TF and Super-TF bearings as two Series of bearings that offer longer service life exceeding that of TF Bearings. As mentioned, the approach to achieving long service life taken in Super-TF bearings is to minimize the concentration of stress around the shoulders of surface dents. A high level of retained austenite helps achieve this and maximizes *r/c* values. However, austenite itself has a soft microstructure and reduces the hardness of the bearing material. In order to meet the seemingly conflicting needs for greater hardness of the bearing material and a higher level of retained austenite, NSK adopted a technique that both promotes uniform distribution and reduces the diameter of carbide and carbonitride particles in the bearing material.

To this end, our researchers developed a new type of steel that has the proper quantity of elements used in the formation of carbides and developed a proprietary process to impart minute carbides and nitride into the material surface. Hi-TF bearings contain a specific amount of added chrome, while Super-TF bearings contain a specific amount of added chrome, while Super-TF bearings contain a specific amount of added chrome, while Super-TF bearings contain a specific amount of added chrome, while Super-TF bearings contain a specific amount of added chrome, while Super-TF bearings contain a specific amount of added chrome, while Super-TF bearings contain a specific amount of added chrome, while Super-TF bearings and super-TF bearings have a greater amount of fine-size carbide and carbonitride particles. Fig. 12.14 shows that the formations of fine carbide and carbonitride specific sp

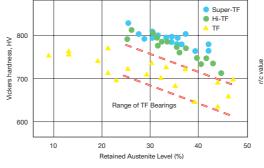


Fig. 12.13 Average Diameter of Carbide Particles in an Ordinary Carburized Steel Bearing

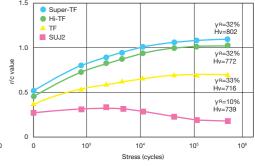


Fig. 12.14 Relationship of Material Hardness and Retained Austenite Level

Fig. 12.15 Change of r/c Value Under Repeated Stress

Fig. 12.11 Relationship of r/c Value to Retained Austenite Level

(4) Service Life Under Contaminated Lubrication Conditions

Table 12.10 and Fig. 12.17 show the results of service life tests conducted under contaminated lubrication conditions with L44649/10 tapered roller bearings. If the service life of an ordinary carburized steel bearing of this type is taken as 1, then the L_{10} life of TF, Hi-TF, and Super-TF bearings would be 4.5, 7.1, and 10.2 respectively (Table 12.10). Hi-TF bearings and Super-TF bearings thus offer over seven to ten times the service life of ordinary carburized steel bearings. Service life is generally affected both by the conditions in which the bearing is used and by the amount of contamination in the lubricant. Under contaminated lubrication conditions, service life may fall to as little as 1/5 the cataloo life.

Hi-TF bearings and Super-TF bearings can achieve for the first time service life that exceeds the catalog life of existing products under contaminated lubrication.

Ordinary Carburized Steel	TF	Hi-TF	Super-TF
1	4.5	7.1	10.2

Table 12.10 Comparison of Service Life of L44649/10 Tapered Roller Bearings

(5) Service Life under Clean Lubrication Conditions

Fig. 12.18 shows the results of service life tests under clean lubrication conditions using Series 6206 deep groove ball bearings. Under clean lubrication, Hi-TF Bearings and Super-TF Bearings show a slightly longer service life than those made with SUJ2 steel. The most important factor is the cleanliness of the steel from which the bearing is made. Material with a greater degree of purity offers a greater degree of long-life performance.

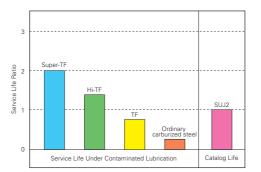


Fig. 12.16 Comparison of Service Life Under Contaminated Lubrication

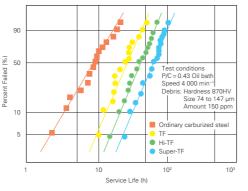


Fig. 12.17 Service Life of L44649/10 Bearings Under Contaminated Lubrication

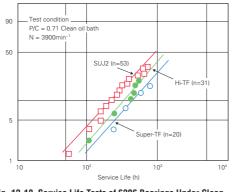
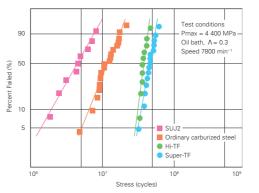
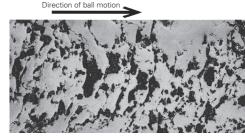




Fig. 12.18 Service Life Tests of 6206 Bearings Under Clean Lubrication

(6) Service Life Under Boundary Lubrication Conditions

Under boundary lubrication conditions where there is an insufficient EHL film, metal-to-metal contact occurs, thus reducing bearing life. Fig. 12.19 shows the results of service life tests conducted under conditions where oil film parameter Λ , which represents the ratio of the thickness of the oil film to the roughness of the surface, is very small (Λ =0.3). At this very small ratio, peeling damage occurs (Fig. 12.20), but in Hi-TF bearings and Super-TF bearings, the concentration of stress around the projections of the contact area is reduced, giving a service life approximately 4.7 times and 5.5 times greater than that of ordinary carburized steel bearings.

←−−→ 100µm

Fig. 12.20 Peeling Damage

(7) Wear and Seizure Resistance

Besides extending service life under contaminated lubrication conditions, another goal is to increase the bearing's resistance to wear and seizure by ensuring the dispersion of a large number of fine carbides and nitrides in the bearing material. Fig. 12.21 presents the results of a Sawin wear test that shows the degree of wear and the seizure limit for different types of bearing material. The test reveals that Hi-TF bearings and Super-TF bearings have superior wear resistance to both SUJ2 steel and TF bearings. Hi-TF bearings and Super-TF bearings are also 20 % to 40 % more resistant to seizure than both SUJ2 steel and TF bearings.

(8) Heat Resistance

Fig. 12.22 shows the results of service life tests conducted with Series 6206 ball bearings at 160 $^{\circ}C$ under clean lubrication conditions. Test results reveal that Super-TF bearings (heat-resistant specifications) have approximately 4 times the service life of SUJ2X26 steel bearings.

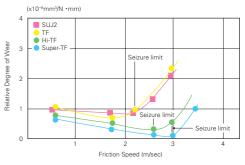


Fig. 12.21 Comparison of Wear Resistance

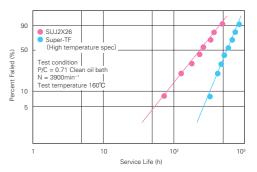


Fig. 12.22 Service Life Test of 6206 Under High Temperature Clean Lubrication

12.4.6 Physical Properties of Representative **Polymers Used as Bearing Material**

Because of their light weight, easy formability, and high corrosion resistance, polymers are widely used as cage materials. Polymers may be used independently, but they are usually combined with functional fillers to form a composite material. Composites can be customized to have specific properties and thus be used as bearing materials. For example, fillers can be used to impart attributes such as low friction, low wear, non-stick slip characteristics, high limit *PV* values, non-scrubbing of counterpart material, mechanical properties, heat resistance, and so on.

Table 12.11 shows characteristics of representative polymer materials used for bearings.

		Table 12.11	Characte	ristics of Rej	oresentative	Polymers				
Plastics	Elastic Modulus (GPa) (1)	Strength GPa (1)	Density g/cm ³	Specific Elastic Modulus ×10⁴mm	$\begin{array}{c} \text{Specific} \\ \text{Strength} \\ \times 10^4 \text{mm} \end{array}$	Melting point °C	Glass Transition Temp °C	Thermal Deformation Temperature °C (²)	Continuous Operating Temperature °C	Remarks
Polyethylene HDPE UHMWPE	0.115 0.5	0.03 0.025	0.96 0.94	12.6 53.2	3.3 2.7	132 136	-20 -20	75/50 75/50	_	High creep and toughness, softening
Polyamide Nylon 6 Nylon 66	2.5 3.0	0.07 0.08	1.13 1.14	221.2 263.2	6.2 7.0	215 264	50 60	150/57 180/60	80 to 120 80 to 120	High water absorption and toughness
Nylon 11	1.25	0.04	1.04	120.2	3.8	180	_	150/55	Lower than nylon 6 or 66	Low water absorption
Polytetra fluoroethylene PTFE	0.40	0.028	2.16	18.5	1.3	327	115	120/—	260	High creep, sintering, low friction, low adhesion, inert. Stable at 290 °C
Poly buthylene terephthalate PBT	2.7	0.06	1.31	206.1	4.6	225	30	230/215	155	
Polyacetal POM Homo-polymer Co-polymer	3.2 2.9	0.07 0.06	1.42 1.41	225.3 205.7	4.9 4.3	175 165	-13	170/120 155/110	 104	High hardness and toughness, low water absorption
Polyether sulfon PES	2.46	0.086	1.37	179.6	6.3	_	225	210/203	180	Usable up to 200 °C. Chemically stable
Polysulfon PSf	2.5	0.07	1.24	201.6	5.6	—	190	181/175	150	
Polyallylate (Aromatic polyester)	1.3 3.0	0.07 0.075	1.35 1.40	96.3 214.3	5.2 5.4	350 350		293 293	300 260 to 300	Inert, high hardness, used as filler for PTFE. Stable up to 320 °C
Polyphenylene sulfide PPS (GF 40%)	4.2	0.14	1.64	256.1	8.5	275	94	>260	220	Hot cured at 360 °C
Polyether ether keton PEEK	1.7	0.093	1.30	130.8	7.2	335	144	152	240	
Poly-meta-phenylene isophthalic amide	10 (fiber) 7.7 (mold)	0.7 0.18	1.38 1.33	724.6 579	50.7 13.5	375 415 (decomposition)	>230 >230	280 280	220 220	Fire retardant, heat- resistant fiber
De lucre de allité de incide	3 (film)	0.17	1.43	203	7.0	Heat de- composition	417 decomposition	360/250	300 (³)	No change in inert gas up to 350 °C
Polypromellitic imide (Aromatic polyimide) PI	2.5 to 3.2 (mold)	0.1	1.43	203	7.0	Heat de- composition	417 decomposition	360/250	260	Usable up to 300 °C for bearings. Sintering, no fusion (molded products)
Polyamide imide PAI	4.7	0.2	1.41	333.3	14.2	_	280	260	210	Usable up to 290 °C as an adhesive or enamel. Improved polyimide for melt molding
Polyether imide (Aromatic polyimide) PI	3.6	0.107	1.27	240.9	—	—	215	210/200	170	Improved polyimide for melt molding
Polyamino bis-maleimide	—	0.35	1.6	—	21.9	—	—	330 (³)	260	

Table 12 11 Characteristics of Depresentative Delumers

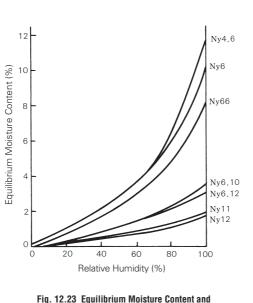
Notes (1) $GPa = 10^4 \text{ kgf/cm}^2 = 10^2 \text{ kgf/mm}^2$

(²) If there is a slash mark "/" in the thermal (3) Reference value

deformation temperature column, the left value applies to 451 kPa, while all other values apply to 1.82 MPa.

12.4.7 Characteristics of Nylon Cage Material

Recently, plastic cages are increasingly used in place of metal cages in bearings. Advantages of using plastic cages include:

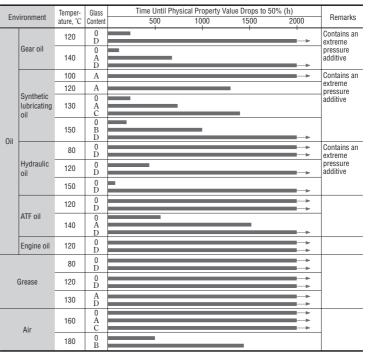

- (1) Light weight and favorable for use with highspeed rotation
- (2) Self-lubricating functionality and low wear. Abrasion powders are usually not produced when plastic cages are used, so a highly clean internal state can be maintained.
- (3) Low noise appropriate for silent environments
- (4) Highly corrosion resistant, no rusting
- (5) Highly shock resistant, proving durable under high moment loading
- (6) Easy molding of complicated shapes ensures high freedom of cage shape selection. Thus, better cage performance can be obtained.

Disadvantages when compared with metal cages include low heat resistance and a limited operating temperature range (normally 120 °C). Care is also necessary for use because plastic cages are sensitive to certain chemicals. Polyamide resin is a representative plastic cage material. Among polyamide resins, nylon-66 is often used because of its high heat resistance and mechanical properties.

Polyamide resin contains the amide coupling (-NHCO-) with hydrogen bonding capability in its molecular chain and is characterized by its regulation of mechanical properties and water absorption according to concentration and hydrogen bonding state. High water absorption (Fig. 12.23) of nylon 66 is generally regarded as a shortcoming because it causes dimensional distortion and deterioration of rigidity. On the other hand, water absorption helps enhance flexibility and prevents cage damage during bearing assembly when a cage is required to have a substantial holding interference for the rolling elements. This also improves toughness which is effective for shock absorption during operation. As such, this so-called shortcoming may be considered as an advantage under certain conditions.

Nylon can be improved substantially in strength and heat resistance by adding a small amount of fiber. Therefore, materials reinforced by glass fiber may be used depending on the cage type and application. To maintain deformation of the cage during bearing assembly, a relatively small amount of glass fiber is commonly used to reinforce the cage. (Table 12.12) Nylon-66 demonstrates vastly superior performance under light operating conditions and has wide application possibilities as a mainstream plastic cage material. However, it often develops sudden deterioration under severe conditions (in hightemperature oil, etc.). Therefore, carefully monitor this material during practical operation.

As an example, Table 12.13 shows the time necessary for the endurance performance of various nylon-66 materials to drop to 50% of the initial value under several different cases. Material deterioration in oil varies depending on the kind of oil. Deterioration is excessive if the oil contains an extreme-pressure agent. Sulfurous extreme-pressure agents accelerate


Relative Humidity of Various Nylons

deterioration more than phosphorous extremepressure agents and such deterioration occurs more rapidly with rising temperatures. On the other hand, material deteriorates less in grease or air than in oil. In addition, materials reinforced with glass fiber can suppress deterioration by the reinforcement effect of glass fibers, thereby helping to extend the durability period.

Table 12.12 Example Applications With Fiber Reinforced Nylon Cages

	Bearing Type	Main Applications	Cage Material		
Ô	Miniature ball bearings	VCR, IC cooling fans			
Bearing	Deep groove ball bearings	Alternators, fan motors for air conditioners	Nylon 66 (Glass fiber content: 0 to 10%)		
Ball	Angular contact ball bearings	Magnetic clutches, automotive wheels			
bu	Needle roller bearings	Automotive transmissions			
Bearing	Tapered roller bearings	Automotive wheels	Nylon 66		
Roller E	ET-type cylindrical roller bearings General		(Glass fiber content: 10 to 25%)		
Rol	H-type spherical roller bearings	General			

Table 12.13 Environmental Resistance of Nylon-66 Resin

Remarks: Glass content: A<B<C<D

12.4.8 Heat-Resistant Resin Materials for Cages

Currently, polyamide resin shows superior performance under medium-intensity operating environmental conditions. This feature plus its relative inexpensiveness has led to its use in increasing quantities. However, contact with acids or oils containing an extreme pressure agent or continuous use at or above 120 $^{\circ}$ C deteriorates and ages the material over time.

Super-engineering plastics should be used for the cage materials of bearings running in severe environments, such as temperatures over 150 °C or with corrosive chemicals present. Though super-engineering plastics have good material heat resistance, chemical resistance, rigidity at high temperature, and mechanical strength, they have problems with characteristics required of cage materials, such as toughness during molding or bearing assembly, weld strength, and fatigue resistance. Furthermore, the costs of these materials are high. Table 12.14 shows the properties of typical super-engineering plastics that can be injection molded into cage shapes.

Among the materials in Table 12.14, though branchtype polyphenylene sulfide (PPS) is often used, the cage design is restricted since forced-removal from the die is difficult due to poor toughness and brittleness. Moreover, PPS is not ideal as a cage material since the claw, stay, ring, or flange of the cage can be easily broken on the bearing assembly line. On the other hand, the heat-resistant plastic cage developed by NSK, is made of linear-chain high molecules which have been polymerized from molecular chains. These molecular chains do not contain branches or crosslinking, so they have high toughness compared to the former material (branch PPS). Linear PPS is not only superior in heat resistance, oil resistance, and chemical resistance, but also has good mechanical characteristics such as the potential for snap fitting (an important characteristic for cages), and hightemperature rigidity.

NSK has reduced the disadvantages associated with linear PPS, chiefly difficulty of removal from the die and slow crystallization speed, thereby establishing it as a material suitable for cages. Thus, linear PPS satisfies the required capabilities for a heat-resistant cage material that considers cost and performance.

Classification	Polyether Sulfone (PES)	Polyether Imide (PEI)	Polyamide Imide (PAI)	Polyether Etherketon (PEEK)	Branch Polyphenylene Sulfide (PPS)	Linear Polyphenylene Sulfide (L-PPS)
Resin	Amorphous resin	Amorphous resin	Amorphous resin	Crystalline resin	Crystalline resin	Crystalline resin
Continuous Temp.	180 ℃	170 °C	210 °C	240 °C	220 °C	220 °C
Physical Properties	 Poor toughness (Care necessary regarding cage shape) Low weld strength Small fatigue resistance 	Poor toughness Low weld strength Low fatigue resistance	 Very brittle (No forced-removal molding) Special heat treatment before use High rigidity, after heat treatment 	•Excellent toughness, wear, and fatigue resistance •Small weld strength	 Excellent mechanical properties Slightly low toughness 	 Excellent mechanical properties Good toughness Good dimensional stability (No water absorption)
Environmental Properties	 Water absorption (Poor dimensional stability) Good aging resistance Poor stress cracking resistance 	•Good aging resistance •Poor stress cracking resistance	•Good environmental resistance	•Good environmental resistance	•Good environmental resistance	•Good environmental resistance (not affected by most chemicals, doesn't deteriorate in high temperature oil with extreme pressure additives).
Material Cost (Superiority)	3	2	5	4	1	1
Cage Application	 Many performance problems High material price 	 Many performance problems High material cost 	•Good performance •High material and molding cost (For special applications)	•Excellent performance •High material cost (For special applications)	 Problems with toughness Cost is high compared to performance 	•Reasonable cost for performance (For general applications)

Table 12.14 Properties of Typical Super-Engineering Plastic Materials for Cages

13. DESIGN OF SHAFTS AND HOUSINGS

13.1	Accuracy and Surface Finish of
	Shafts and Housings A 270

13.2 Shoulder and Fillet Dimensions A 270

13.3 Bearing Seals A 272
13.3.1 Non-Contact Seals
(1) Oil Groove Seals A 273
(2) Flinger (Slinger) Type Seals
(3) Labyrinth Seals A 273
13.3.2 Contact Seals
(1) Oil Seals A 274
(2) Felt Seals A 275

13. DESIGN OF SHAFTS AND HOUSINGS

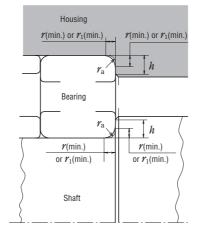
13.1 Accuracy and Surface Finish of Shafts and Housings

If the accuracy of a shaft or housing does not meet the specification, the performance of the bearings will be affected and they will not perform to their full capability. For example, inaccuracy in the squareness of the shaft shoulder may cause misalignment of the bearing inner and outer rings, which may reduce the bearing fatigue life by adding an edge load in addition to the normal load. Cage fracture and seizure sometimes occur for this reason. Housings should be rigid in order to provide firm bearing support and are also advantageous in regards to noise, load distribution, etc.

For normal operating conditions, a turned finish or smooth bored finish is sufficient for the fitting surface; however, a ground finish is necessary for applications where vibration and noise must be low or where heavy loads are applied.

In cases where two or more bearings are mounted in a single-piece housing, the fitting surfaces of the housing bore should be designed so both bearing seats may be finished together in one operation, such as inline boring. In the case of split housings, take care in the fabrication of the housing so that the outer ring does not become deformed during installation. The tolerance and surface finish of shafts and housings for normal operating conditions are listed in Table 13.1.

Table 13. 1 Tolerance and Roughness of Shaft and Housing


Item	Class of Bearings	Shaft	Housing Bore	
Tolerance for	Normal, Class 6	$\frac{\text{IT3}}{2}$ to $\frac{\text{IT4}}{2}$	$\frac{\text{IT4}}{2}$ to $\frac{\text{IT5}}{2}$	
Out-of-Roundness	Class 5, Class 4	$\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$	$\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$	
Tolerance for	Normal, Class 6	$\frac{\text{IT3}}{2}$ to $\frac{\text{IT4}}{2}$	$\frac{\text{IT4}}{2}$ to $\frac{\text{IT5}}{2}$	
Cylindricality	Class 5, Class 4	$\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$	$\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$	
Tolerance for	Normal, Class 6	IT3	IT3 to IT4	
Shoulder Runout	Class 5, Class 4	IT3	IT3	
Roughness of Fitting Surfaces R _a	Small Bearings Large Bearings	0.8 1.6	1.6 3.2	

Remarks This table gives general recommendation using the radius measuring method. The basic tolerance (IT) class should be selected in accordance with the bearing tolerance class. Please refer to the Appendix Table 11 (Page E016) for IT values. If the outer ring is mounted in the housing bore with interference or a thin cross-section bearing is mounted on a shaft and housing, the tolerance of the shaft and housing should be tighter since this affects the bearing raceway directly.

13.2 Shoulder and Fillet Dimensions

The shoulders of the shaft or housing in contact with the face of a bearing must be perpendicular to the shaft center line (refer to Table 13.1). The front face side shoulder bore of the housing for a tapered roller bearing should be parallel with the bearing axis in order to avoid interference with the cage.

The fillets of the shaft and housing should not come in contact with the bearing chamfer; therefore, the fillet radius r_a must be smaller than the minimum bearing chamfer dimension r or r_1 .

Fig. 13.1 Chamfer Dimensions, Fillet Radius of Shaft and Housing, and Shoulder Height

The shoulder heights for both shafts and housings for radial bearings should be sufficient to provide good support over the face of the bearings, but enough face should extend beyond the shoulder to permit use of special dismounting tools. The recommended minimum shoulder heights for Metric Series radial bearings are listed in Table 13.2

Nominal dimensions associated with bearing mounting, including the proper shoulder diameters, are listed in the bearing tables. Sufficient shoulder height is particularly important for supporting the side ribs of tapered roller bearings and for cylindrical roller bearings subjected to high axial loads.

The values of h and r_a in Table 13.2 should be adopted in those cases where the fillet radius of the shaft or housing is as shown in Fig. 13.2 (a), while the values in Table 13.3 are generally used with an undercut fillet radius produced when grinding the shaft as shown in Fig. 13.2 (b).

Table 13. 2 Recommended Minimum Shoulder Heights for Use With Metric Series Radial Bearings Units : mm

Nominal		Shaft or Housing						
Chamfer Dimensions	Fillet		ulder Heights nin.)					
 𝕐 (min.) or 𝑘 (min.) 	Radius ℋa (max.)	Deep Groove Ball Bearings (¹), Self-Aligning Ball Bearings, Cylindrical Roller Bearings (¹), Solid Needle Roller Bearings	Angular Contact Ball Bearings, Tapered Roller Bearings (²), Spherical Roller Bearings					
0.05	0.05	0.2						
0.08	0.08	0.3						
0.1	0.1	0.4						
0.15	0.15	0.6						
0.2	0.2	0.8						
0.3	0.3	1	1.25					
0.6	0.6	2	2.5					
1	1	2.5	3					
1.1	1	3.25	3.5					
1.5	1.5	4	4.5					
2	2	4.5	5					
2.1	2	5.5	6					
2.5	2		6					
3	2.5	6.5	7					
4	3	8	9					
5	4	10	11					
6	5	13	14					
7.5	6	16	18					
9.5	8	20	22					
12	10	24	27					
15	12	29	32					
19	15	38	42					

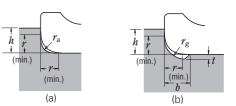


Fig. 13. 2 Chamfer Dimensions, Fillet Radius, and Shoulder Height

Table 13. 3 Shaft Undercut

Units : mm

Chamfer Dimensions of Inner and	Undercut Dimensions		
Outer Rings Υ (min.) or Υ_1 (min.)	t	$\gamma_{ m g}$	b
1	0.2	1.3	2
1.1	0.3	1.5	2.4
1.5	0.4	2	3.2
2	0.5	2.5	4
2.1	0.5	2.5	4
2.5	0.5	2.5	4
3	0.5	3	4.7
4	0.5	4	5.9
5	0.6	5	7.4
6	0.6	6	8.6
7.5	0.6	7	10

note (') when axial loads are applied, the shoulder heigh must be sufficiently higher than these values.

(2) When heavy axial loads are applied, the shoulder height must be sufficiently higher than these values.

Remarks 1. The corner fillet radius is also applicable to thrust bearings

 The shoulder diameter is listed instead of shoulder height in the bearing tables. For thrust bearings, the squareness and contact area of the supporting face for the bearing rings must be adequate. In the case of thrust ball bearings, the housing shoulder diameter D_a should be less than the pitch circle diameter of the balls, and the shaft shoulder diameter d_a should be greater than the pitch circle diameter of the balls (Fig. 13.3).

For thrust roller bearings, the full contact length between rollers and rings should be supported by the shaft and housing shoulder (Fig. 13.4).

These diameters, $d_{\rm a}$ and $D_{\rm a}$, are listed in the bearing tables.

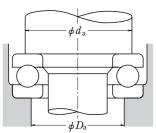


Fig. 13.3 Face-Supporting Diameters for Thrust Ball Bearings

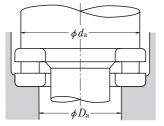


Fig. 13.4 Face-Supporting Diameters for Thrust Roller Bearings

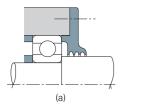


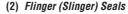
Fig. 13.5 Example Oil Grooves

13.3 Bearing Seals

To insure the longest possible life of a bearing, seals may be necessary to prevent leakage of lubricant or entry of dust, water, or other harmful material such as metallic particles. The seals must be free from excessive running friction and chance of seizure. They should also be easy to assemble and disassemble. Be sure to select a suitable seal for individual applications that considers the lubricating method.

13.3.1 Non-Contact Seals

Various sealing devices that do not contact the shaft are available, such as oil grooves, flingers, and labyrinths. Satisfactory sealing can usually be obtained with such seals because of their close running clearance. Centrifugal force may also assist in preventing internal contamination and leakage of the lubricant.


(1) Oil Groove Seals

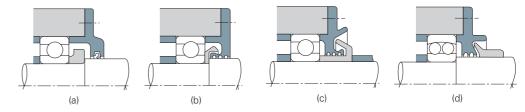
Oil groove seals function by the use of a small gap between the shaft and housing cover in combination with multiple grooves in the housing cover and/or shaft surface (Fig. 13.5 (a), (b)). Since the use of oil grooves alone is not completely effective except at low speeds, a flinger or labyrinth seal is often combined with an oil groove seal (Fig. 13.5 (c)). The entry of dust can be impeded by packing a grease with a consistency of about 200 (NLGI Grade 4) into the grooves of the shaft and/or housing.

The smaller the gap between the shaft and housing, the greater the sealing effect; however, the shaft and housing must not come in contact while running. The recommended gaps are given in Table 13.4.

The recommended groove width is approximately 3 to 5 mm, with a depth of about 4 to 5 mm. When sealing using grooves only, there should be three or more grooves.

(c)

A flinger is designed to force water and dust away by centrifugal force acting on any contaminants on the shaft. Sealing mechanisms with flingers inside the housing, as shown in Fig. 13.6 (a) and (b), are mainly intended to prevent oil leakage and are used in environments with relatively little dust. Dust and moisture cannot enter due to the centrifugal force of flingers as shown in Fig. 13.6 (c) and (d).


(3) Labyrinth Seals

Labyrinth seals are formed by interdigitated segments attached to the shaft and housing that are separated by a very small gap. They are particularly suitable for preventing oil leakage from the shaft at high speeds. The type shown in Fig. 13.7 (a) is widely used because of its ease of assembly, but those shown in Fig. 13.7 (b) and (c) have better seal effectiveness. Normal radial and axial labyrinth seal gaps are shown in Table 13.5.

Table 13. 4 Gaps Between Shafts and Housings for Oil-Groove Type Seals Units : mm	
Radial Gap	
0.25 to 0.4	
0.5 to 1.5	

Table 13. 5	Labyrinth Seal Gaps	
		Units : mm

Nominal Shaft Diameter	Labyrinth Gaps	
Nominal Shart Diameter	Radial Gap	Axiall Gap
Under 50	0.25 to 0.4	1 to 2
50-200	0.5 to 1.5	2 to 5

Fig. 13.6 Example Flinger Configurations

	- ··
()	
<u> </u>	
(a)	Axial Labyrinth

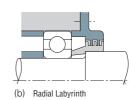


Fig. 13.7 Example Labyrinth Designs

13.3.2 Contact Seals

Contact seals function by physical contact between the shaft and seal, which may be made of synthetic rubber, synthetic resin, felt, etc. Oil seals with synthetic rubber lips are most frequently used.

(1) Oil Seals

Many types of oil seals are used to prevent lubricant from leaking while also preventing dust, water, and other foreign matter from entry (Figs. 13.8 and 13.9) In Japan, such oil seals are standardized (refer to JIS B 2402) by size and type. Since many oil seals are equipped with circumferential springs to maintain adequate contact force, oil seals can follow the non-uniform rotational movement of a shaft to some degree.

Synthetic rubber seal lip materials are often used, including nitrile, acrylate, silicone, fluorine, and tetrafluoride ethylene. The maximum allowable operating temperature for each material increases in this same order.

Synthetic rubber oil seals may cause troubles such as overheating, wear, and seizure unless there is an oil film between the seal lip and shaft. Therefore, some lubricant should be applied to the seal lip when the seals are installed. Furthermore, the lubricant inside the housing should spread slightly between the sliding surfaces. However, please be aware that ester-based grease will cause acrylic rubber material to swell while low aniline point mineral oil, silicone-based grease, and silicon-based oil will cause silicone-based material to swell. Moreover, urea-based grease will cause fluorine-based material to tetriorate.

The permissible circumferential speed for oil seals varies depending on type, finish of the shaft surface, liquid to be sealed, temperature, shaft eccentricity, etc. The temperature range for oil seals is restricted by the lip material. Approximate circumferential surface speeds and permitted temperatures under favorable conditions are listed in Table 13.6.

When oil seals are used at high circumferential surface speed or under high internal pressure, the contact surface of the shaft must be smoothly finished, and shaft eccentricity should be under 0.02 to 0.05 mm.

The hardness of the shaft's contact surface should be over HRC40 by heat treatment or hard-chrome plating in order to gain abrasion resistance. If possible, a hardness over HRC 55 is recommended.

The approximate level of contact surface finish required for several shaft circumferential surface speeds is given in Table 13.7.

(2) Felt Seals

Felt seals are one of the simplest and most common seals used in transmission shafts and other applications.

However, since oil permeation and leakage are unavoidable if oil is used, this type of seal is used only for grease lubrication, primarily to prevent dust and other foreign matter from entry. Felt seals are not suitable for circumferential surface speeds exceeding 4m/sec; therefore, they should be replaced with synthetic rubber seals if the application allows.

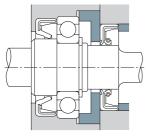


Fig. 13.8 Example of Application of Oil Seal (1)

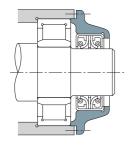


Fig. 13.9 Example of Application of Oil Seal (2)

Table 13. 6	Permissible Circumferential Surface Speeds
	and Temperature Ranges for Oil Seals

Sea	al Materials	Permissible Circumferential Speeds (m/sec)	Operating Temperature Range(°C)(¹)
	Nitrile Rubber	Under 16	-25 to +100
Synthetic	Acrylic Rubber	Under 25	—15 to +130
Rubber	Silicone Rubber	Under 32	—70 to +200
	Fluorine- containes Rubber	Under 32	-30 to +200
Tetrafluori	de Ethylene Resin	Under 15	-50 to +220

Note (1) The upper limit of the temperature range may be raised about 20 °C for operation at short intervais.

Table 13. 7 Shaft Circumferential Surface Speeds and Finish of Contact Surfaces

Circumferential Surface Speeds (m/s)	Surface Finish R _a (µm)
Under 5	0.8
5 to 10	0.4
Over 10	0.2