メインビジュアル

精機製品・技術レポート:ボールねじの摩擦

ボールねじはアンギュラ玉軸受と似た転がり対偶を有するが、軌道がねじれているため、鋼球とねじみぞとの間に玉軸受にはない滑り成分が存在すること、回路内の鋼球数が多く、かつ、保持器がないため鋼球どうしが滑り合うこと、ボールチューブなどの循環機構を有すること、加工精度・仕上げ面あらさが軸受ほどにはよくないことなどのために、アンギュラ玉軸受より摩擦が大きくなることは避けられない。

1. 摩擦係数と効率

三角ねじ面での滑り摩擦係数の考え方に準じて、ボールねじ全体の摩擦を転走面での摩擦に置き換えた見かけの摩擦係数と摩擦トルクとの関係は、次式により示される。

  • μ1 = MF1 sinα / {RP P (1+tan2β) + MF1 tanβ} ・・・・・・(1)
  • μ2 = MF2 sinα / {RP P(1+tan2β) - MF2 tanβ} ・・・・・・(2)

ここに、

  • μ: 見かけの摩擦係数
  • MF: 摩擦モーメント
  • α: 接触角
  • RP: ピッチ半径
  • P: スラスト荷重
  • β: リード角

式(1)、(2)および式(3)、(4)の添字1、2は、それぞれ正作動(回転運動を直線運動に変換)および逆作動(直線運動を回転運動に変換)を表す。
また、ボールねじの正効率η1、逆効率η2は、μ1、μ2を用い次式で計算できる。

  • η1 = (sinα - μ1tanβ) / (sinα + μ1 / tanβ) ・・・・・・(3)
  • η2 = (sinα - μ2 / tanβ) / (sinα + μ2tanβ) ・・・・・・(4)

ボールねじの効率は、正作動の場合に通常95%前後であり、逆作動の場合でも、これに近い値が実験的に確認されており、すべりねじの場合における20~30%の効率に比べて非常に高い。
実験結果の一例として、起動時の摩擦トルク実測値よりμ1 = 0.0024~0.0026、μ2 = 0.0036~0.0038、η1 = 96.7~96.9%、η2 = 95.1~95.3%が得られる。ここに、RP = 14.872mm、β = 6.2°、α = 45°、P = 50~300kgである。

2. 摩擦の要因

ボールねじの摩擦の主な要因として、次のものが挙げられる。

  • 1) 鋼球とねじみぞ間の摩擦
  • 2) 鋼球どうしの摩擦
  • 3) ボールチューブなどの循環機構に関する摩擦
  • 4) 潤滑剤の抵抗

また、これらの摩擦に影響を及ぼす種々の因子のうち、内部仕様によるものとして、みぞ形状・リード角・鋼球径など各部の形状・寸法や予圧量、予圧方法、加工精度、仕上げ面あらさなどがあり、さらに材料、熱処理条件や潤滑剤の種類・量などが挙げられる。また、使用条件によるものとして、速度条件、荷重条件、揺動・逆作動などの特殊な使用条件、ボールねじの取付条件、取付け周りの温度およびふん囲気条件(水中・真空中・不活性ガス中などの環境条件)などが挙げられる。
これらの摩擦に影響を与える因子のうち主なものと、さきに述べた要因とをて適宜組合せながら、過去の実験結果を取入れて説明する。

2.1. 鋼球とねじみぞ間の摩擦

玉軸受の摩擦の中で大きな比率を占めるスピン、差動すべりなどの成分は、ボールねじの場合には、通常全体に占める割合として小さい。それよりもボールねじでは、軌道がねじれているために生じる鋼球とねじみぞ間の滑り摩擦が主要成分であると考えられる。ボールねじが作動すると、鋼球と軸みぞ、鋼球とナットみぞの各接点および鋼球中心は、いずれも軸心周りのらせん運動を行なうが、各点での半径が異なるため、各らせんは互いに平行とはならない。そこで、鋼球は転がりながら、各接点でそのらせん方向に引張られ、ミクロ的にではあるが、みぞの中を転がり方向とは直角の方向に移動して、くさび状に食込むことになる。転がりながらのみぞへの食込みが、ある定常状態に達すると、鋼球はそこで滑りを伴う転がり運動を続けることになる。

転がり量に対する滑り量の割合、すなわち滑り率は、ボールねじの内部仕様によって計算できる。その値は、一般に0.005~0.05くらいであり、数値としては小さいが、滑り摩擦係数が転がり摩擦係数に比べてけた違いに大きいことにより、この滑り摩擦がボールねじの摩擦の主要成分であることがいえよう。
また、上述した鋼球の移動によるみぞへの食込み現象のため、条件によって程度は異なるが、鋼球にかかる荷重の大きさ、鋼球とねじみぞ・鋼球どうしの接触状態などが変化して、トルク変動の要因となっている。たとえば、間座で予圧を与えた定位置予圧方式のボールねじでは、軸みぞとナットみぞの相対位置関係が拘束されることにより、鋼球にかかる荷重が変化しやすい。

とくに、ボールねじが一箇所で揺動を繰り返す場合など鋼球どうしがせり合ってきたときには、鋼球どうしの摩擦の増大と、鋼球中心の移動、みぞへの食込みが互いに影響しあって、摩擦トルクが非常に大きくなることがある。これを通常、「揺動トルク」または「玉づまり現象」などと呼んでいる。
この現象は、ボールねじのできばえによっても程度は異なるが、工作精度をよくすることだけ完全になくすことは難しい。「揺動トルク」の増大を抑制する方法としては、鋼球中心の移動・鋼球にかかる荷重の増大を抑えることと、鋼球どうしの拘束・摩擦を小さくすることが考えられる。
図1(a)にような単一Rみぞ形状のボールねじでは、鋼球中心の移動量が比較的大きく「揺動トルク」の増大が顕著に現れやすい。

図1:みぞ形状と鋼球中心移動量の関係
(b)のようにゴシックアーチみぞ形状で単体すきまを小さくしたボールねじでは、鋼球がねじみぞと3点で接触する。いわゆる3点当たりとなる。そのため摩擦は多少増加するが鋼球のみぞへの食込みは単一Rに比べて少なく、「揺動 トルク」の増大はそれほど顕著でない。また、鋼球中心の移動量が小さいので、摩擦トルクも比較的安定する傾向にある。
また、ゴシックアーチみぞ形状を一部改良することによって、さらに効果をあげた例もある。
予圧方法をばねによる定圧予圧方式に変えることによっても、大きな効果をあげることができる。定圧予圧を採用すると、剛性は幾分低下するが、この効果は、鋼球がみぞに食込んだとき、2個のナットが多少軸方向に逃げあうことができるため、鋼球にかかる荷重があまり変化せず、玉づまり現象が緩和されることによるものであろう。
鋼球どうしの拘束・摩擦を減ずる方法としては、スペーサボールを使用する方法、回路内の鋼球数を数個減らしてやる方法などがある。
スペーサボールを使用すると、それだけ負荷鋼球の数が減るため剛性、負荷容量は低下するが、「揺動トルク」の抑制、摩擦トルクの安定性については非常に大きな効果がある。
スペーサボールとは、負荷鋼球の間に置いた、負荷鋼球より数十ミクロン直径の小さいボールのことである。その効果は、図2をモデルとして、次のように説明することができる。

図2(a)はスペーサボールを使用しない場合であり、このときには、各鋼球は同じ方向に転がっているため。鋼球どうしがせり合ってくると、鋼球相互間で滑りを生じる。(b)のようにスペーサボールを使用すると、スペーサボールは負荷鋼球より直径が小さいため、みぞに拘束されないので、負荷鋼球とは反対向きに回転することができ、鋼球どうしがせり合ってきた場合でも、鋼球相互間の滑りがほとんど生じないことになる。

図2:スペーサボールの効果&図3:内部設計の変更と摩擦特性の関係
摩擦の面からは、負荷鋼球とスペーサボールとを1個置きに組込むのが理想的であるが、剛性、負荷容量を考慮して、負荷鋼球3個に対してスペーサボール1個を使用するなどの方法も採用されている。
回路内の鋼球数を数個減らすと、剛性、負荷容量をそれほど損なうことなく、かなり効果をあげることができるが、スペーサボールの効果には及ばない。
図3に、トルク変化の現れやすい単一Rボールねじについて、これらの効果を実施した例を示す。
ボールねじの運動方向を逆転するとわずかの間摩擦トルクが小さくなることがある。これは、鋼球のみぞへの食込み方向が、ボールねじの運動方向によって異なるため、鋼球は一時的に食込みから開放されると同時に、滑り摩擦からも開放されて、反対側のみぞへ食込むまでの間、摩擦が小さくなることによる現象である。したがって、ボールねじの機能上何ら異常が生じているものではない。
ボールねじを、非常に狭い角度範囲で揺動運動させると、前に述べた「揺動トルク」の増大とは逆に、摩擦が非常に小さくなる現象が見られることがある。これは、先の「揺動トルク」と区別して、「微小角揺動トルク」と呼ばれる。この場合は、揺動範囲が非常に狭いため、鋼球のみぞへの食込みが定常状態に達する以前に運動方向が逆転される。したがって、鋼球どうしがせり合ってくるというよりも、鋼球がねじみぞの中心付近に寄せられることになる。そのため、上で述べた逆転時の摩擦トルクと同じ理由で、摩擦が小さくなるものといえよう。

2.2. 鋼球どうしの摩擦

前項で述べたように、鋼球どうしがせり合ってきたときには、鋼球どうしの摩擦およびその影響が顕著になるが、通常の状態においても、それらは無視できない大きさを持つ、この場合にも、スペーサボールを使用したり、回路内の鋼球数を減らしたりすることによってかなりの効果が期待され、ほぼ回路内いっぱいに負荷鋼球を組んだ場合と同一荷重条件で比較して、摩擦トルクが最大で約30%減少した実験結果が得られている。

2.3. ボールチューブに関する摩擦

ボールチューブ内部における、鋼球とボールチューブとの滑り摩擦は、比較的小さく一般には問題とならない。それよりも、ボールチューブのタング部(出入り口部)と鋼球との干渉、タング部付近での鋼球の挙動は、ボールねじ全体の摩擦に対してかなりの影響を与える。また、場合によっては、タング部が変形して作動不良を生じたり、破損して作動不能になったりする可能性もある。したがって、ボールチューブの強度、タング部の形状が重要な意味を持ち、現在では、コンピュータを用いてタング部形状の計算・設計を行うことにより、性能の向上が計られている。

NSK BEARING JOURNAL
No.637 ボールねじの摩擦と温度上昇 より抜粋