ポジショニングアクチュエータ
取扱説明書

XY-HS00(□)□□-M□□

日本精工株式会社
No. SCXY10001A
目次

<table>
<thead>
<tr>
<th>項目</th>
<th>頁碼</th>
</tr>
</thead>
<tbody>
<tr>
<td>目次</td>
<td>3</td>
</tr>
<tr>
<td>1. まえがき</td>
<td>7</td>
</tr>
<tr>
<td>2. 概要</td>
<td>8</td>
</tr>
<tr>
<td>3. 安全にお使いいただくために</td>
<td>9</td>
</tr>
<tr>
<td>4. 安全事項</td>
<td>10</td>
</tr>
<tr>
<td>5. 構成</td>
<td>11</td>
</tr>
<tr>
<td>5.1 ポジショニングアクチュエータ構成</td>
<td>11</td>
</tr>
<tr>
<td>5.1.1 呼び番号構成</td>
<td>11</td>
</tr>
<tr>
<td>5.1.2 シリーズ対応表</td>
<td>11</td>
</tr>
<tr>
<td>5.1.3 本体構成</td>
<td>11</td>
</tr>
<tr>
<td>5.2 付属品</td>
<td>12</td>
</tr>
<tr>
<td>5.2.1 付属電源ケーブル</td>
<td>12</td>
</tr>
<tr>
<td>5.2.2 付属I/Oケーブル</td>
<td>12</td>
</tr>
<tr>
<td>5.2.3 付属通信ケーブル</td>
<td>13</td>
</tr>
<tr>
<td>5.3 オプション品</td>
<td>13</td>
</tr>
<tr>
<td>5.3.1 オプション電源ケーブル</td>
<td>13</td>
</tr>
<tr>
<td>5.3.2 オプションI/Oケーブル</td>
<td>14</td>
</tr>
<tr>
<td>5.3.3 オプション通信ケーブル</td>
<td>14</td>
</tr>
<tr>
<td>5.3.4 原点センサおよびオーバートラベルセンサ</td>
<td>15</td>
</tr>
<tr>
<td>5.3.5 カバーウニット</td>
<td>17</td>
</tr>
<tr>
<td>5.4 外部機器構成</td>
<td>18</td>
</tr>
<tr>
<td>5.4.1 ポジション運転時に必要な外部機器</td>
<td>18</td>
</tr>
<tr>
<td>5.4.2 簡易プログラム運転時に必要な外部機器</td>
<td>19</td>
</tr>
<tr>
<td>6. 仕様</td>
<td>20</td>
</tr>
<tr>
<td>6.1 軽負荷位置決め用XY-HS00□□-M05シリーズ仕様</td>
<td>20</td>
</tr>
<tr>
<td>6.2 中負荷位置決め用XY-HS00□□-M08シリーズ仕様</td>
<td>22</td>
</tr>
<tr>
<td>6.3 重負荷位置決め用XY-HS00□□-M10シリーズ仕様</td>
<td>24</td>
</tr>
<tr>
<td>6.4 電気仕様</td>
<td>26</td>
</tr>
<tr>
<td>6.4.1 電源コネクタ</td>
<td>26</td>
</tr>
<tr>
<td>6.4.2 I/Oコネクタ</td>
<td>27</td>
</tr>
<tr>
<td>6.4.3 ホスト通信コネクタ</td>
<td>30</td>
</tr>
<tr>
<td>6.4.4 スレーブ通信コネクタ</td>
<td>30</td>
</tr>
<tr>
<td>6.5 専用ソフトウェア仕様</td>
<td>31</td>
</tr>
</tbody>
</table>
7. 運転準備 .. 33

7.1 開梱 .. 33

7.1.1 開梱に関する安全事項 .. 33

7.1.2 現品確認 .. 33

7.2 設置 .. 34

7.2.1 設置に関する安全事項 .. 34

7.2.2 取付け面の精度 .. 36

7.3 配線 .. 37

7.3.1 配線に関する安全事項 .. 37

7.3.2 電源コネクタ配線 ... 39

7.3.3 I/Oコネクタ配線 ... 40

7.3.4 ホスト通信コネクタ配線 .. 41

7.3.5 スレーブ通信コネクタ配線 ... 41

7.3.6 原点センサおよびオーバートラベルセンサ配線 ... 42

7.4 電源投入 ... 44

7.4.1 電源投入時の安全事項 ... 44

7.4.2 電源投入時の確認事項（出荷時設定） ... 46

7.4.3 電源投入時の確認事項（オーバートラベルセンサ使用時） .. 47

7.4.4 電源投入時の確認事項（ジョグ使用時） .. 50

7.5 パーソナルコンピュータおよびソフトウェアの準備 ... 52

7.5.1 PAターム動作環境 .. 52

7.5.2 PAタームのインストール ... 54

8. 運転 ... 55

8.1 運転時の安全事項 ... 55

8.2 ポジション運転 ... 57

8.2.1 通信ケーブルの配線 ... 57

8.2.2 電源投入 ... 57

8.2.3 PAタームの起動 ... 58

8.2.4 呼び番号確認 ... 59

8.2.5 位置リストの設定（直接数値入力） ... 60

8.2.6 位置リストの設定（ティーチング） ... 64

8.2.7 PAタームによる動作確認 .. 66

8.2.8 上位機器への接続 ... 67

8.2.9 上位機器を用いた運転 ... 67
<table>
<thead>
<tr>
<th>章目</th>
<th>項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>簡易プログラム運転</td>
</tr>
<tr>
<td>8.3.1</td>
<td>パーソナルコンピュータとの結線～位置リストの設定</td>
</tr>
<tr>
<td>8.3.2</td>
<td>プログラムステップセルの設定</td>
</tr>
<tr>
<td>8.3.3</td>
<td>簡易プログラムに関する機能</td>
</tr>
<tr>
<td>8.3.4</td>
<td>PAタームによる動作確認</td>
</tr>
<tr>
<td>8.3.5</td>
<td>周辺機器への接続</td>
</tr>
<tr>
<td>8.3.6</td>
<td>周辺機器を用いたプログラム運転</td>
</tr>
<tr>
<td>8.4</td>
<td>負荷質量と移動距離に対する位置決め時間と必要停止時間</td>
</tr>
<tr>
<td>8.5</td>
<td>グラフ表示</td>
</tr>
<tr>
<td>9.</td>
<td>保守</td>
</tr>
<tr>
<td>9.1</td>
<td>保守に関する安全事項</td>
</tr>
<tr>
<td>9.2</td>
<td>定期点検と点検項目</td>
</tr>
<tr>
<td>9.3</td>
<td>定期交換</td>
</tr>
<tr>
<td>9.4</td>
<td>修理</td>
</tr>
<tr>
<td>9.5</td>
<td>保証期間と保証範囲</td>
</tr>
<tr>
<td>9.5.1</td>
<td>保証期間</td>
</tr>
<tr>
<td>9.5.2</td>
<td>保証の範囲</td>
</tr>
<tr>
<td>9.5.3</td>
<td>免責事由</td>
</tr>
<tr>
<td>9.5.4</td>
<td>サービスの範囲</td>
</tr>
<tr>
<td>9.5.5</td>
<td>生産中止のアナウンス、生産中止後の保守期間について</td>
</tr>
<tr>
<td>10.</td>
<td>ステータスおよびアラーム表示</td>
</tr>
<tr>
<td>11.</td>
<td>トラブルシュート</td>
</tr>
<tr>
<td>11.1</td>
<td>トラブルシュート時の安全事項</td>
</tr>
<tr>
<td>11.2</td>
<td>ターミナルソフトの設定</td>
</tr>
<tr>
<td>11.2.1</td>
<td>通信ケーブルの配線</td>
</tr>
<tr>
<td>11.2.2</td>
<td>COMポートの確認</td>
</tr>
<tr>
<td>11.2.3</td>
<td>ハイパーターミナルの設定</td>
</tr>
<tr>
<td>11.2.4</td>
<td>ポジショニングアクチュエータとの通信の確認</td>
</tr>
<tr>
<td>11.2.5</td>
<td>通信の切断</td>
</tr>
<tr>
<td>11.2.6</td>
<td>電源の遮断</td>
</tr>
<tr>
<td>11.3</td>
<td>電源投入時のトラブル</td>
</tr>
<tr>
<td>11.3.1</td>
<td>電源が入らない</td>
</tr>
<tr>
<td>11.3.2</td>
<td>電源投入後にサーボオンしない</td>
</tr>
<tr>
<td>11.3.3</td>
<td>電源投入後に原点復帰が行われない</td>
</tr>
<tr>
<td>11.3.4</td>
<td>原点復帰が正常に行われない（押し当て原点復帰時）</td>
</tr>
<tr>
<td>11.3.5</td>
<td>原点復帰が正常に行われない（オーバートラベルセンサ使用時）</td>
</tr>
<tr>
<td>項目</td>
<td>ページ</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>11.4 運転時のトラブル</td>
<td>95</td>
</tr>
<tr>
<td>11.4.1 ポジション運転ができない</td>
<td>95</td>
</tr>
<tr>
<td>11.4.2 簡易プログラム運転ができない</td>
<td>96</td>
</tr>
<tr>
<td>11.4.3 音、振動、オーバーシュートが大きい</td>
<td>97</td>
</tr>
<tr>
<td>11.4.4 アラームが発生する</td>
<td>97</td>
</tr>
<tr>
<td>11.5 PAターム使用時のトラブル</td>
<td>98</td>
</tr>
<tr>
<td>11.5.1 PAタームが起動できない</td>
<td>98</td>
</tr>
<tr>
<td>11.5.2 初期画面にてポジショニングアクチュエータと接続できない</td>
<td>98</td>
</tr>
<tr>
<td>11.5.3 出荷状態に戻す際に通信エラーが発生する</td>
<td>99</td>
</tr>
<tr>
<td>11.5.4 「緊急停止が入力されました」と表示されPAタームが操作できない</td>
<td>100</td>
</tr>
<tr>
<td>12. 技術資料</td>
<td>101</td>
</tr>
<tr>
<td>12.1 寿命計算</td>
<td>101</td>
</tr>
<tr>
<td>12.1.1 目的</td>
<td>101</td>
</tr>
<tr>
<td>12.1.2 定格荷重</td>
<td>101</td>
</tr>
<tr>
<td>12.1.3 可搬モーメント</td>
<td>101</td>
</tr>
<tr>
<td>12.1.4 ガイド部の寿命計算式</td>
<td>102</td>
</tr>
<tr>
<td>12.1.5 ボールねじ部およびサポート軸受部の寿命計算式</td>
<td>104</td>
</tr>
<tr>
<td>12.1.6 寿命計算例</td>
<td>105</td>
</tr>
<tr>
<td>12.2 実効トルク計算</td>
<td>108</td>
</tr>
<tr>
<td>12.2.1 目的</td>
<td>108</td>
</tr>
<tr>
<td>12.2.2 実効トルク計算</td>
<td>108</td>
</tr>
<tr>
<td>12.2.3 実効トルク計算例</td>
<td>109</td>
</tr>
<tr>
<td>13. 出荷時設定一覧</td>
<td>112</td>
</tr>
<tr>
<td>14. 改定記事</td>
<td>115</td>
</tr>
</tbody>
</table>
1. まえがき

本書は、ポジショニングアクチュエータシリーズの取扱説明書です。

本書に掲載されている登録商標および商標名、製品名等、各社の登録商標または商標です。
2. 概要

ポジショニングアクチュエータシリーズは、ボールねじとリニアガイドが一体となったモノキャリアと、コントローラ一体型ACサーボモータを組み合わせた、高剛性・高精度な直動アクチュエータです。

高剛性・高精度といった基本性能に加え、省配線・省スペースといった使いやすさをプラスしております。

ストローク300mm〜1000mm、軽負荷位置決め用（〜7.5kg）から重負荷位置決め用（〜20kg）まで3シリーズ12種類を標準品として準備しております。

コントローラ一体型ACサーボモータ独自の制御技術により、チューニングレスにてお使いいただけます。

用途に応じ、下記の動作モードをお使いいただけます。

・ ポジション運転
 外部からの接点信号に応じた最大7ポジションへの位置決め運転ができます。
 弊社のホームページからダウンロードできるオリジナルソフトウェア「PAターム」により、簡単な設定が可能です。

・ 簡易プログラム運転
 パーソナルコンピュータやシーケンサといったホストを常設することなく、ポジショニングアクチュエータを核としたプログラム運転が可能です。
 最大40ステップ、最大7ポジションのプログラム運転ができます。
 PAタームにより、簡単に設定が可能です。
3. 安全にお使いいただくために

- 本製品は、一般工業などの使用を対象としており、人命にかかわるような機器やシステム、誤操作や故障が人身の傷害や重大な損害につながる可能性のある用途を目的に設計、製造されたものではありません。

- 本製品は、原子力制御用、航空宇宙機器用、交通機器用、医療機器用、各種安全装置、またはこれらに準ずる機器やシステムなど、極めて高い信頼性や安全性が要求される用途にはご使用いただけません。

- 本製品は厳重な品質管理のもとに製造しておりますが、本製品の故障により重大な事故または損失が予測される設備への適用に際しては、安全装置を設置してください。

- 作業の前に、JIS 規格「産業用マニピュレーティングロボット・安全性」（JIS B8433-1）および厚生労働省「労働安全衛生規則」を精読し遵守してください。

- 本製品は、電源投入後すぐにモータへの通電を開始し、続けて自動的に原点復帰を行います。不慮のシステムダウンからの復旧時にも原点復帰を開始します。「7.4 電源投入」の章にて制限事項を確認いただけますようお願いします。

- 本製品においては、オーバートラベルセンサおよび原点センサはオプションであり、オーバートラベルセンサを設けると入力ポート数の関係から緊急停止入力が使用できなくなるなどの制限事項があります。「5.2.4 原点センサおよびオーバートラベルセンサ」および「7.3.6 原点センサおよびオーバートラベルセンサ配線」の章にて制限事項を確認いただけますようお願いします。

- 本製品のスライダを手動で逆作動させる場合は、50mm/s 以下としてください。電源を切った状態であっても、上記速度以上で勢い良くスライダを逆作動させると回生電力によりコントローラ一体型 AC サーボモータが起動してスライダが急にロックし、けがの原因になります。
4. 安全事項

安全にご使用いただくために、取扱説明書をよくお読みになり、十分理解した上で作業を行ってください。

この取扱説明書では、安全事項について、以下の見出しをつけ記載します。

⚠️危険
もし守りいただかない場合、重大な人身事故につながる恐れがある事項。

⚠️警告
人身事故につながる恐れのある事項。

⚠️注意
機械や設備の故障、およびワークの破損につながる恐れがある事項。

具体的な行動を促す事項や内容については、以下の見出しをつけ記載します。

🚫禁止 本製品の取り扱いにおいて、その行為を禁止する事項。
📍指示 本製品の取り扱いにおいて、指示に基づく行為を強制する事項。
5. 構成

5.1 ポジショニングアクチュエータ構成

ポジショニングアクチュエータ3シリーズ全12種類の共通構成です。

5.1.1 呼び番号構成

呼び番号例： XY-HS 00100 - M10

ストローク（cm単位）

0030〜0090：4桁
00100：5桁

M05：軽負荷位置決め用
M08：中負荷位置決め用
M10：重負荷位置決め用

5.1.2 シリーズ対応表

<table>
<thead>
<tr>
<th>シリーズ呼び番号</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>軽負荷位置決め用（～7.5kg）</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XY-HS00□□□-M05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中負荷位置決め用（～15kg）</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XY-HS00□□□-M08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>重負荷位置決め用（～20kg）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>XY-HS00□□□-M10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.1.3 本体構成

詳細は「6.仕様」を参照してください。
「5.2 付属品」に示すケーブルが付属します。
5.2 付属品

- 3種類のケーブルが付属します。いずれもバラ線で片側は切り落としです。

注意

禁止 全ての付属ケーブルは可動部に使用しないでください。
指示 バラ線部はチューブを被覆するなどしてループができないよう処理してください。

5.2.1 付属電源ケーブル

写真5.2付属電源ケーブル

<table>
<thead>
<tr>
<th>ピン No.</th>
<th>線色</th>
<th>信号名</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>赤</td>
<td>R/L1</td>
</tr>
<tr>
<td>2</td>
<td>白</td>
<td>S/-</td>
</tr>
<tr>
<td>3</td>
<td>黒</td>
<td>T/L2</td>
</tr>
<tr>
<td>4</td>
<td>緑</td>
<td>E</td>
</tr>
</tbody>
</table>

5.2.2 付属I/Oケーブル

写真5.3付属I/Oケーブル

<table>
<thead>
<tr>
<th>ピン No.</th>
<th>信号名</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>INPUT1+</td>
</tr>
<tr>
<td>4</td>
<td>INPUT2+</td>
</tr>
<tr>
<td>6</td>
<td>INPUT3</td>
</tr>
<tr>
<td>8</td>
<td>INPUT5</td>
</tr>
<tr>
<td>10</td>
<td>INPUT COM</td>
</tr>
<tr>
<td>12</td>
<td>OUTPUT2</td>
</tr>
<tr>
<td>14</td>
<td>OUTPUT4</td>
</tr>
<tr>
<td>16</td>
<td>ANALOG IN</td>
</tr>
<tr>
<td>18</td>
<td>N.C.</td>
</tr>
<tr>
<td>20</td>
<td>GND</td>
</tr>
</tbody>
</table>
5.2.3 付属通信ケーブル

付属通信ケーブル

図5.4 付属通信ケーブル

5.3 オプション品

■ 各種ケーブルを取り揃えております。弊社へご用命ください。

注意 禁止 全てのオプションケーブルは可動部には使用しないでください。

5.3.1 オプション電源ケーブル

■ キャプタイヤケーブルを用いた電源ケーブルです。
■ 呼び番号 XY-E4020-PW：ケーブル長 2000mm

図5.5 オプション電源ケーブル
5.3.2 オプションI/Oケーブル

- PVC シース付きケーブルを用いた I/O ケーブルです。
- 呼び番号 XY-E4010-IO：ケーブル長 1000mm
 XY-E4020-IO：ケーブル長 2000mm

5.3.3 オプション通信ケーブル

- パーソナルコンピュータの RS-232C ポートとポジショニングアクチュエータを接続するための固定配線用ケーブルです。
- パラメータやデータの書き換え、プログラム編集を行う際に必要なケーブルです。
- 呼び番号 XY-E4020-RS：ケーブル長 2000mm

なお、図5.6および図5.7は、それぞれオプションI/Oケーブルとオプション通信ケーブルの詳細を示しています。
5.3.4 原点センサおよびオーバートラベルセンサ

注意

オーバートラベルセンサを用いる場合、原点センサとオーバートラベルセンサを兼用にしなければならない。緊急停止が入力できない、などの制限事項があります。

「7.3.6 オプション原点センサおよびオーバートラベルセンサの配線」を参照してください。

ポジショニングアクチュエータは原点センサに代わり、電源投入後、自動的に押当て原点復帰を行うよう出荷時に設定されています。
具体的には、電源投入後、モータ側へスライダが移動し、モータ側の限界ストロークエンドに一定トルクで押し当てて限界ストロークエンドを検出した後、オフセット位置まで戻るシーケンスにて原点復帰を行います。

オーバートラベルに関しては、センサによるオーバートラベル検出に代わり、ソフトリミットにてストロークが制限されるよう出荷時に設定されています。

よって、原点センサおよびオーバートラベルセンサはオプション対応となります。
センサレールおよびセンサユニットの呼び番号は、表5.2を参照してください。

ピン配置や電気仕様は「6.4.2 I/O コネクタ」を参照してください。

図5.8 原点センサおよびオーバートラベルセンサ
5. 構成

表 5.2 センサレールおよびセンサユニット呼び番号

<table>
<thead>
<tr>
<th>適合シリーズ</th>
<th>ポジショニングアクチュエータ</th>
<th>センサレール呼び番号</th>
<th>センサユニット※</th>
<th>図 5.10 の各寸法, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>呼び番号</td>
<td>ストローク</td>
<td>呼び番号</td>
<td>番号 (C)</td>
</tr>
<tr>
<td>軽負荷位置決め用</td>
<td>XY-HS0030-M05</td>
<td>300mm</td>
<td>MC-SRL5-0430</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>XY-HS0040-M05</td>
<td>400mm</td>
<td>MC-SRL5-0530</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0050-M05</td>
<td>500mm</td>
<td>MC-SRL5-0630</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0060-M05</td>
<td>600mm</td>
<td>MC-SRL5-0730</td>
<td></td>
</tr>
<tr>
<td>中負荷位置決め用</td>
<td>XY-HS0030-M08</td>
<td>300mm</td>
<td>MC-SRL8-0470</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>XY-HS0040-M08</td>
<td>400mm</td>
<td>MC-SRL8-0570</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0050-M08</td>
<td>500mm</td>
<td>MC-SRL8-0670</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0060-M08</td>
<td>600mm</td>
<td>MC-SRL8-0770</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0070-M08</td>
<td>700mm</td>
<td>MC-SRL8-0870</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0080-M08</td>
<td>800mm</td>
<td>MC-SRL8-0970</td>
<td></td>
</tr>
<tr>
<td>重負荷位置決め用</td>
<td>XY-HS0090-M10</td>
<td>900mm</td>
<td>MC-SRL1-1080</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>XY-HS00100-M10</td>
<td>1000mm</td>
<td>MC-SRL1-1180</td>
<td></td>
</tr>
</tbody>
</table>

※ センサユニットの構成は以下です。
- オムロン製フォトセンサ EE-SX674: 3 個
- オムロン製コネクタ EE-1001: 3 個
- ドッグ: 1 個
- 取付けねじ類 (間座, ナット, ねじ)

※ センサユニットはセンサ 3 個で構成されておりますが、お客様が機能および論理を変更できる入力ポートは 2 ポートのみであり、OTL (モータ側オーバートラベルセンサ) を ORG (原点センサ) として兼用とする必要があります。よってセンサ 1 個とセンサ 3 個で構成されておりますが、お客様が機能および論理を変更できる入力ポートは 2 ポートのみであり、OTL (モータ側オーバートラベルセンサ) を ORG (原点センサ) として兼用する必要があります。

図 5.9 フォトセンサ出力回路

図 5.10 フォトセンサ組立例図

表 5.3 フォトセンサ動作タイムチャート

<table>
<thead>
<tr>
<th>動作モード</th>
<th>接続端子</th>
<th>タイムチャート</th>
</tr>
</thead>
<tbody>
<tr>
<td>入光時オン</td>
<td>L～+間</td>
<td>短絡</td>
</tr>
<tr>
<td></td>
<td>+～L間</td>
<td>開放</td>
</tr>
<tr>
<td>入光時オフ</td>
<td>L～+間</td>
<td>開放</td>
</tr>
</tbody>
</table>

図 5.11 センサレール組立例図

注意

軽負荷位置決め用、中負荷位置決め用は、センサレールとサポートユニット組み付け部の間に付属の間座を挟んで付けてください。
5.3.5 カバーユニット

- 可動部の保護に使用します。
- 「5.3.4 原点センサおよびオーバートラベルセンサ」を使用の際は、フルカバーユニットの取付けはできません。

図5.12 上面カバーユニットおよびフルカバーユニット

表5.4 ポジショニングアクチュエータ カバーユニット一覧

<table>
<thead>
<tr>
<th>適合シリーズ</th>
<th>ポジショニングアクチュエータ呼び番号</th>
<th>上面カバーユニット呼び番号</th>
<th>フルカバーユニット呼び番号</th>
<th>図5.13の各寸法, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>軽負荷</td>
<td>XY-HS0030-M05 300mm</td>
<td>MC-CV05030-01</td>
<td>MC-CV05030-00</td>
<td>L 38.5, H 65, W 2.6</td>
</tr>
<tr>
<td></td>
<td>XY-HS0040-M05 400mm</td>
<td>MC-CV05040-01</td>
<td>MC-CV05040-00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0050-M05 500mm</td>
<td>MC-CV05050-01</td>
<td>MC-CV05050-00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0060-M05 600mm</td>
<td>MC-CV05060-01</td>
<td>MC-CV05060-00</td>
<td></td>
</tr>
<tr>
<td>中負荷</td>
<td>XY-HS0030-M08 300mm</td>
<td>MC-CV08030-01</td>
<td>MC-CV08030-00</td>
<td>L 56.5, H 90, W 2.6</td>
</tr>
<tr>
<td></td>
<td>XY-HS0040-M08 400mm</td>
<td>MC-CV08040-01</td>
<td>MC-CV08040-00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0050-M08 500mm</td>
<td>MC-CV08050-01</td>
<td>MC-CV08050-00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0060-M08 600mm</td>
<td>MC-CV08060-01</td>
<td>MC-CV08060-00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0070-M08 700mm</td>
<td>MC-CV08070-01</td>
<td>MC-CV08070-00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0080-M08 800mm</td>
<td>MC-CV08080-01</td>
<td>MC-CV08080-00</td>
<td></td>
</tr>
<tr>
<td>重負荷</td>
<td>XY-HS0090-M10 900mm</td>
<td>MC-CV10090-01</td>
<td>MC-CV10090-00</td>
<td>L 66.5, H 110, W 3.8</td>
</tr>
<tr>
<td></td>
<td>XY-HS0100-M10 1000mm</td>
<td>MC-CV10100-01</td>
<td>MC-CV10100-00</td>
<td></td>
</tr>
</tbody>
</table>

※1 センサユニット使用時はフルカバーユニットの取付けはできません。
※2 フルカバーユニットには上面カバーユニットが含まれております。
※3 カバー寸法は取り付け用の小ねじ寸法を含んでおります。カバーの取り付け寸法については、カバー板厚 (t=1〜1.2) に加え小ねじ高さ約2.5mmを加え、干渉をご考慮ください。

図5.13 上面カバーユニットおよびフルカバーユニット構成
5.4 外部機器構成

- アクチュエータとして動作させるには、AC 電源や外部機器が必要です。
- 動作モードにより必要となる外部機器が異なります。

5.4.1 ポジション運転時に必要な外部機器

- 専用ソフトウェア「PA ターム」にて位置リストを設定いただき、お客様のシーケンサなどの上位機器から 3 ポートの信号および運転開始信号の全 4 信号を入力いただくことで、最大 7 ポジションへの位置決め運転ができます。（3 点全入力 "オフ" は、「簡易プログラム運転」の起動に割り当てられます）
- PA タームを用いるには RS-232C ポートを装備したパーソナルコンピュータが必要です。
- 入力ポートのフォトカプラ電源として、DC5～24V の外部電源を供給してください。

\[\text{注意}\]
上位機器に連動した緊急停止信号または緊急停止スイッチの接点を入力してください。

図 5.14 ポジション運転時に必要な外部機器
5.構成

5.4.2 簡易プログラム運転時に必要な外部機器

- 専用ソフトウェア「PA ターム」にてプログラムいただくことで、最大 40 ステップ、最大 7 ポジションの簡易プログラム運転ができます。
- パーソナルコンピュータやシーケンサといった上位機器を常設することなく、ポジショニングアクチュエータを核としたプログラム運転が可能です。タイマーやステップ間の入力待ち、出力ポートの制御もプログラムできます。
- 入力ポートのフォトカプラ電源として、DC5～24V の外部電源を供給してください。

注意
上位機器に連動した緊急停止信号または緊急停止スイッチの接点を入力してください。

図 5.15 簡易プログラム運転時に必要な外部機器
6. 仕様

以下に示す仕様は、ポジショニングアクチュエータとしての代表値を示します。
モノキャリアの詳細仕様については、弊社の「モノキャリア」カタログを参照してください。
コントローラ一体型 AC サーボモータの詳細仕様については、マッスル株式会社のホームページからダウンロードできる「クールマッスル 2 ウーザガイド」を参照してください。
ダウンロード方法などの詳細は、マッスル株式会社のホームページを参照してください。

6.1 軽負荷位置決め用 XY-HS00□□-M05 シリーズ 仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>呼び番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>XY-HS0030-M05</td>
<td>MCM05030P20K00</td>
</tr>
<tr>
<td>XY-HS0040-M05</td>
<td>MCM05040P20K00</td>
</tr>
<tr>
<td>XY-HS0050-M05</td>
<td>MCM05050P20K00</td>
</tr>
<tr>
<td>XY-HS0060-M05</td>
<td>MCM05060P20K00</td>
</tr>
</tbody>
</table>

表 6.1 XY-HS00□□-M05 一般仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>呼び番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>モノキャリア型式</td>
<td>MCM05030P20K00</td>
</tr>
<tr>
<td>ストローク（呼び）</td>
<td>300mm</td>
</tr>
<tr>
<td>限界ストローク</td>
<td>330mm</td>
</tr>
<tr>
<td>長手寸法 L1</td>
<td>607.2</td>
</tr>
<tr>
<td>長手寸法 L2</td>
<td>630</td>
</tr>
<tr>
<td>長手寸法 L3</td>
<td>700</td>
</tr>
<tr>
<td>質量</td>
<td>3.5kg</td>
</tr>
<tr>
<td>取付け穴数 n</td>
<td>9</td>
</tr>
<tr>
<td>最高速度</td>
<td>1000mm/s</td>
</tr>
<tr>
<td>最大加速度</td>
<td>9800mm/s^2 (下記負荷条件かつヨーイング・ローリングモーメント無き場合)</td>
</tr>
<tr>
<td>可搬質量</td>
<td>7.5kg</td>
</tr>
<tr>
<td>負荷重心位置</td>
<td>スライダ上面中心より 40mm以下</td>
</tr>
<tr>
<td>静定格モーメント</td>
<td>ローリング M_Roll : 229N・m, ピッチング M_Yaw : 89N・m, ヨーイング M_Pitch : 89N・m</td>
</tr>
<tr>
<td>位置指令最小設定単位</td>
<td>2μm</td>
</tr>
<tr>
<td>内分解能</td>
<td>0.4μm</td>
</tr>
<tr>
<td>速度指令最小設定単位</td>
<td>0.1mm/s</td>
</tr>
<tr>
<td>加速度指令最小設定単位</td>
<td>2mm/s^2</td>
</tr>
<tr>
<td>繰り返し位置決め精度</td>
<td>±3μm</td>
</tr>
<tr>
<td>バックラッシュ</td>
<td>3μm</td>
</tr>
<tr>
<td>ボールねじリード</td>
<td>20mm</td>
</tr>
<tr>
<td>モータ型式</td>
<td>マッスル株式会社製コントローラ一体型 AC サーボモータ CM2-C-56B10A-R</td>
</tr>
<tr>
<td>入力電源</td>
<td>電源対応範囲: 単相または 3 相 AC100〜240V±10%（周波数 50/60Hz±5%）</td>
</tr>
<tr>
<td>定格電源容量</td>
<td>200VA（計算による参考値）</td>
</tr>
<tr>
<td>最大電源容量</td>
<td>450VA（計算による参考値）</td>
</tr>
<tr>
<td>定格出力</td>
<td>100W</td>
</tr>
<tr>
<td>定格回転速度</td>
<td>3000min(^{-1}) に制限</td>
</tr>
<tr>
<td>最高回転速度</td>
<td>3000min(^{-1}) に制限</td>
</tr>
<tr>
<td>定格トルク</td>
<td>0.19N・m</td>
</tr>
<tr>
<td>最大トルク</td>
<td>0.57N・m</td>
</tr>
<tr>
<td>エンコーダ</td>
<td>インクリメンタル型磁気エンコーダ</td>
</tr>
<tr>
<td>エンコーダ分解能</td>
<td>50000ppr</td>
</tr>
<tr>
<td>回転速度指令分解能</td>
<td>10pps</td>
</tr>
</tbody>
</table>
XY-HS00□□-M05 仕様続け

<table>
<thead>
<tr>
<th>項目</th>
<th>召呼番号</th>
<th>XY-HS0030-M05</th>
<th>XY-HS0040-M05</th>
<th>XY-HS0050-M05</th>
<th>XY-HS0060-M05</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
<td>呼び番号</td>
<td>XY-HS0030-M05</td>
<td>XY-HS0040-M05</td>
<td>XY-HS0050-M05</td>
<td>XY-HS0060-M05</td>
</tr>
<tr>
<td>回転速度指令分解能</td>
<td>10pps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>制御方式</td>
<td>クローズドループベクトル制御方式</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>データ数</td>
<td>位置</td>
<td>最大 7 ポジション (速度、加速度は任意)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>バイドプログラムステップ数</td>
<td>最大 8 種</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>入力信号</td>
<td>デジタル入力 : 6 点 (出荷時設定は「6.4.2 I/O コネクタ」を参照)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>出力信号</td>
<td>デジタル出力 : 4 点、アナログ出力 : 1 点 (出荷時設定は「6.4.2 I/O コネクタ」を参照)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>原点復帰方法</td>
<td>電源投入後、モータ側の限界ストークエンドへ押当て (出荷時設定)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>原点復帰速度</td>
<td>10mm/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>押当てトルク</td>
<td>定格トルクの 90%にて限界ストークエンドとして認識</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オフセット量</td>
<td>モータ側限界ストークエンドの電気的原点から 15mm (出荷時設定)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>通信</td>
<td>RS-232C 準拠 通信速度 9600bps～230400bps (出荷時は 38400bps に設定)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ホストおよびスレーブ通信用の 2 ポートを装備 (スレーブ通信用は使用しません)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>メカニカルブレーキ</td>
<td>メカニカルブレーキ、ダイナミックブレーキともに非搭載</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>内蔵電源コンデンザ</td>
<td>内蔵電源コンデンザへ回生 (回生抵抗および回生抵抗用端子は非搭載)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>保護機能</td>
<td>位置偏差オーバーフロー、過電圧、過負荷、温度異常、バワモジュール異常</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>周囲温度</td>
<td>0～40℃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>保存温度</td>
<td>-20～60℃ (凍結なきこと)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿度</td>
<td>90%以下 (結露なきこと)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>標高</td>
<td>海抜 1000m 以下</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>衝撃</td>
<td>9.8m/s²(1G) 以下</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境</td>
<td>98m/s²(10G) 以下</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>屋内 (直射日光が当らないこと)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>腐食性ガス、引火性ガス、オイルミスト、粉塵のなきこと</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 6.1 XY-HS00□□-M05 外形図
6.2 中負荷位置決め用XY-HS00□□-M08 シリーズ 仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>XY-HS0030-M08</th>
<th>XY-HS0040-M08</th>
<th>XY-HS0050-M08</th>
<th>XY-HS0060-M08</th>
<th>XY-HS0070-M08</th>
<th>XY-HS0080-M08</th>
</tr>
</thead>
<tbody>
<tr>
<td>モノキャリア型式</td>
<td>MCM08030P20K00</td>
<td>MCM08040P20K00</td>
<td>MCM08050P20K00</td>
<td>MCM08060P20K00</td>
<td>MCM08070P20K00</td>
<td>MCM08080P20K00</td>
</tr>
<tr>
<td>ストローク（呼び）</td>
<td>300mm</td>
<td>400mm</td>
<td>500mm</td>
<td>600mm</td>
<td>700mm</td>
<td>800mm</td>
</tr>
<tr>
<td>限界ストローク</td>
<td>335mm</td>
<td>435mm</td>
<td>535mm</td>
<td>635mm</td>
<td>735mm</td>
<td>835mm</td>
</tr>
<tr>
<td>長手寸法</td>
<td>L1 691.2</td>
<td>L1 791.2</td>
<td>L1 891.2</td>
<td>L1 991.2</td>
<td>L1 1091.2</td>
<td>L1 1191.2</td>
</tr>
<tr>
<td></td>
<td>L2 470</td>
<td>L2 570</td>
<td>L2 670</td>
<td>L2 770</td>
<td>L2 870</td>
<td>L2 970</td>
</tr>
<tr>
<td></td>
<td>L3 400</td>
<td>L3 500</td>
<td>L3 600</td>
<td>L3 700</td>
<td>L3 800</td>
<td>L3 900</td>
</tr>
<tr>
<td>質量</td>
<td>8.0kg</td>
<td>8.9kg</td>
<td>9.9kg</td>
<td>10.5kg</td>
<td>12.0kg</td>
<td>12.7kg</td>
</tr>
<tr>
<td>取付け穴数 n</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>最高速度</td>
<td>1000mm/s</td>
<td>780mm/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最大加速度</td>
<td>9800mm/s²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>重量</td>
<td>15kg</td>
<td>14.5kg</td>
<td>14kg</td>
<td>13.5kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>負荷重心位置</td>
<td>スライダ上面中心より 60mm 以下</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>静定格モーメント</td>
<td>ローリング MRO : 770N・m, ピッチング MPO : 300N・m, ヨーイング MYO : 300N・m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>位置指令最小設定単位</td>
<td>2μm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>内部分解能</td>
<td>0.4μm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>速度指令最小設定単位</td>
<td>0.1mm/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>加速度指令最小設定単位</td>
<td>2mm/s²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>繰り返し位置決め精度</td>
<td>±3μm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バックラッシュ</td>
<td>3μm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ボールねじリード</td>
<td>20mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>モータ型式</td>
<td>マッスル株式会社製コントローラ一体型 AC サーボモータ CM2-C-56B20A-R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>入力電源</td>
<td>電源対応範囲</td>
<td>単相または3相 AC100～240V±10%（周波数 50/60Hz±5%）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>定格電源容量</td>
<td>350VA（計算による参考値）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最大電源容量</td>
<td>650VA（計算による参考値）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>定格出力</td>
<td>200W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>定格回転速度</td>
<td>3000min⁻¹に制限</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2340min⁻¹に制限</td>
</tr>
<tr>
<td>最高回転速度</td>
<td>3000min⁻¹に制限</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2340min⁻¹に制限</td>
</tr>
<tr>
<td>定格トルク</td>
<td>0.32N・m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最大トルク</td>
<td>1.15N・m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エンコーダ</td>
<td>インクリメンタル型磁気エンコーダ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エンコーダ分解能</td>
<td>50000ppr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>回転速度分解能</td>
<td>10pps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>制御方式</td>
<td>クローズドループベクトル制御方式</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>データ数</td>
<td>位置 最大 7 ポジション（速度、加速度は任意）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>タイマー</td>
<td>最大 8 種</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>簡易プログラムステップ数</td>
<td>最大 40 ステップ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
XY-HS00□□-M08 仕様続き

<table>
<thead>
<tr>
<th>項目</th>
<th>呼び番号</th>
<th>XY-HS0030-M08</th>
<th>XY-HS0040-M08</th>
<th>XY-HS0050-M08</th>
<th>XY-HS0060-M08</th>
<th>XY-HS0070-M08</th>
<th>XY-HS0080-M08</th>
</tr>
</thead>
<tbody>
<tr>
<td>入力信号</td>
<td></td>
<td>デジタル入力：6点</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(出荷時設定は「6.4.2 I/O コネクタ」を参照)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>出力信号</td>
<td></td>
<td>デジタル出力：4点、アナログ出力：1点</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(出荷時設定は「6.4.2 I/O コネクタ」を参照)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>原点復帰方法</td>
<td></td>
<td>電源投入後、モータ側の限界ストロークエンドへ押当て（出荷時設定）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>原点復帰速度</td>
<td></td>
<td>10mm/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>原点復帰動作</td>
<td></td>
<td>押当てトルク</td>
<td>定格トルクの70%にて限界ストロークエンドとして認識</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オフセット量</td>
<td></td>
<td>モータ側限界ストロークエンドの電気的原点から15mm（出荷時設定）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>通信</td>
<td></td>
<td>RS-232C準拠 通信速度 9600bps～230400bps（出荷時は38400bpsに設定）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ホストおよびスレーブ通信用の2ポートを装備（スレーブ通信用は使用しません）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>プレーキ機能</td>
<td></td>
<td>メカニカルプレーキ、ダイナミックプレーキともに非搭載</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>回生機能</td>
<td></td>
<td>内蔵電源コンデンサへ回生（回生抵抗および回生抵抗用端子は非搭載）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>保護機能</td>
<td></td>
<td>位置偏差オーバーフロー、過電流、過負荷、温度異常、バーメージュール異常</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>周囲温度</td>
<td></td>
<td>0～40℃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>保存温度</td>
<td></td>
<td>-20～60℃（凍結なきこと）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿度</td>
<td></td>
<td>90％以下（結露なきこと）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>標高</td>
<td></td>
<td>海抜1000m以下</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>振動</td>
<td></td>
<td>9.8m/s²(1G)以下</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>衝撃</td>
<td></td>
<td>98m/s²(10G)以下</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境</td>
<td></td>
<td>屋内（直射日光が当らないこと）</td>
<td>腐食性ガス、引火性ガス、オイルミスト、粉塵のなきこと</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図6.2 XY-HS00□□-M08 外形図
6.3 重負荷位置決め用 XY-HS00(□)□□-M10 シリーズ 仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>呼び番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>モノキャリア型式</td>
<td>XY-HS0090-M10</td>
</tr>
<tr>
<td>施工ストローク（呼び）</td>
<td>XY-HS00100-M10</td>
</tr>
<tr>
<td>限界ストローク</td>
<td>MCM10090P20K00</td>
</tr>
<tr>
<td>L1</td>
<td>900mm</td>
</tr>
<tr>
<td>L1</td>
<td>1000mm</td>
</tr>
<tr>
<td>L2</td>
<td>1349.4mm</td>
</tr>
<tr>
<td>L2</td>
<td>1449.4mm</td>
</tr>
<tr>
<td>L3</td>
<td>1080mm</td>
</tr>
<tr>
<td>L3</td>
<td>1180mm</td>
</tr>
<tr>
<td>L3</td>
<td>1000mm</td>
</tr>
<tr>
<td>L3</td>
<td>1000mm</td>
</tr>
<tr>
<td>質量</td>
<td>23.2kg</td>
</tr>
<tr>
<td>取付け穴数 n</td>
<td>11</td>
</tr>
<tr>
<td>最高速度</td>
<td>880mm/s</td>
</tr>
<tr>
<td>最大加速度</td>
<td>9800mm/s²（下記負荷条件かつヨーイング・ローリングモーメント無き場合）</td>
</tr>
<tr>
<td>可搬質量</td>
<td>20kg</td>
</tr>
<tr>
<td>静定格モーメント</td>
<td>20kg</td>
</tr>
<tr>
<td>位置指令最小設定単位</td>
<td>2μm</td>
</tr>
<tr>
<td>内部分解能</td>
<td>0.4μm</td>
</tr>
<tr>
<td>速度指令最小設定単位</td>
<td>0.1mm/s</td>
</tr>
<tr>
<td>加速度指令最小設定単位</td>
<td>2mm/s²</td>
</tr>
<tr>
<td>繰り返し位置決め精度</td>
<td>±3μm</td>
</tr>
<tr>
<td>バックラッシュ</td>
<td>3μm</td>
</tr>
<tr>
<td>ボールねじドリフト</td>
<td>20mm</td>
</tr>
<tr>
<td>モータ型式</td>
<td>MCM10100P20K00</td>
</tr>
<tr>
<td>入力電源</td>
<td>CM2-C-60A40A-R</td>
</tr>
<tr>
<td>電源対応範囲</td>
<td>單相または3相AC200～240V±10%（周波数50/60Hz±5%）</td>
</tr>
<tr>
<td>定格電源容量</td>
<td>850VA（計算による参考値）</td>
</tr>
<tr>
<td>最大電源容量</td>
<td>950VA（計算による参考値）</td>
</tr>
<tr>
<td>定格出力</td>
<td>400W</td>
</tr>
<tr>
<td>定格回転速度</td>
<td>2160min⁻¹に制限</td>
</tr>
<tr>
<td>最高速回転速度</td>
<td>2160min⁻¹に制限</td>
</tr>
<tr>
<td>定格トルク</td>
<td>1.09N・m</td>
</tr>
<tr>
<td>最大トルク</td>
<td>3.82N・m</td>
</tr>
<tr>
<td>エンコーダ</td>
<td>インクリメンタル型磁気エンコーダ</td>
</tr>
<tr>
<td>エンコーダ分解能</td>
<td>50000ppr</td>
</tr>
<tr>
<td>回転速度分解能</td>
<td>10pps</td>
</tr>
<tr>
<td>制御方式</td>
<td>クローズドループベクトル制御方式</td>
</tr>
<tr>
<td>データ数</td>
<td></td>
</tr>
<tr>
<td>位置</td>
<td>最大7ポジション（速度、加速度は任意）</td>
</tr>
<tr>
<td>タイマー</td>
<td>最大8種</td>
</tr>
<tr>
<td>簡易プログラム</td>
<td>最大40ステップ</td>
</tr>
<tr>
<td>ステップ数</td>
<td></td>
</tr>
</tbody>
</table>
6. 仕様

XY-HS00(□)□□-M10 仕様続き

<table>
<thead>
<tr>
<th>項目</th>
<th>呼び番号</th>
<th>XY-HS0090-M10</th>
<th>XY-HS00100-M10</th>
</tr>
</thead>
<tbody>
<tr>
<td>入力信号</td>
<td>デジタル入力：6点</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(出荷時設定は「6.4.2 I/O コネクタ」を参照)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>出力信号</td>
<td>デジタル出力：4点, アナログ出力：1点</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(出荷時設定は「6.4.2 I/O コネクタ」を参照)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>原点復帰方法</td>
<td>電源投入後, モータ側の限界ストロークエンドへ押当て（出荷時設定）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>原点復帰速度</td>
<td>10mm/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>押当てトルク</td>
<td>定格トルクの 25%にて限界ストロークエンドとして認識</td>
<td></td>
<td></td>
</tr>
<tr>
<td>オフセット量</td>
<td>モータ側限界ストロークエンドの電気的原点から 15mm（出荷時設定）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>通信</td>
<td>RS-232C 準拠 通信速度 9600bps～230400bps（出荷時は38400bpsに設定）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ホストおよびスレーブ通信用の2ポートを装置（スレーブ通信用は使用しません）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ブレーキ機能</td>
<td>メカニカルブレーキ, ダイナミックブレーキともに非搭載</td>
<td></td>
<td></td>
</tr>
<tr>
<td>回生機能</td>
<td>内蔵電源コンデンサへ回生（回生抵抗および回生抵抗用端子は非搭載）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>保護機能</td>
<td>位置偏差オーバーフロー, 通電圧, 通負荷, 温度異常, パワーモジュール異常</td>
<td></td>
<td></td>
</tr>
<tr>
<td>周囲温度</td>
<td>0〜40℃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>保存温度</td>
<td>-20〜60℃（凍結なきこと）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿度</td>
<td>90％以下（結露なきこと）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>標高</td>
<td>海抜1000m以下</td>
<td></td>
<td></td>
</tr>
<tr>
<td>振動</td>
<td>9.8m/s²(1G)以下</td>
<td></td>
<td></td>
</tr>
<tr>
<td>衝撃</td>
<td>98m/s²(10G)以下</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境</td>
<td>室内（直射日光が当らないこと）腐食性ガス、引火性ガス、オイルミスト、粉塵のなきこと</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ストローク1000mmの場合は、寸法40が90になります。

![図6.3 XY-HS00(□)□□-M10外形図](image-url)
6.4 電気仕様

6.4.1 電源コネクタ

<table>
<thead>
<tr>
<th>ピン No.</th>
<th>信号名</th>
<th>三相 AC 電源の場合</th>
<th>単相 AC 電源の場合</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td>L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>L2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>E</td>
<td></td>
<td>接地</td>
</tr>
</tbody>
</table>

表 6.4 電源コネクタ 信号名一覧

AMP 製 1-178128-4

図 6.4 電源コネクタ ピン配置

<table>
<thead>
<tr>
<th>信号名</th>
<th>項目</th>
<th>条件</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>入出力回路</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>L1</td>
<td>三相 (R, S, T)</td>
<td>AC90V</td>
<td>-</td>
<td>AC264V</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>-</td>
<td>印加電圧</td>
<td>50/60Hz</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>L2</td>
<td>単相 (L1, L2 間)</td>
<td>AC90V</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

表 6.5 電源コネクタ信号 電気仕様

26/116
6.4.2 I/Oコネクタ

- INPUT1,2 および OUTPUT1,2,3,4 は PA タームにて機能および論理を変更できます。
- INPUT3,4,5,6 は、専用ソフトウェア「PA ターム」用に機能割当てが設定されておりますので、機能および論理を変更することができません。

注意
+5V 出力の用途は、ANALOG OUT にフィルタなどのアナログ回路を設けた際の電源を前提としております。INPUT1～6 および OUTPUT1～4 の電源や、オーバートラベルセンサの電源として用いないでください。誤動作の原因となります。

表 6.6 I/O コネクタ 信号名一覧

<table>
<thead>
<tr>
<th>ピン No.</th>
<th>信号名</th>
<th>出荷時設定</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V</td>
<td>・</td>
<td>アナログ回路用+5V 電源出力です。</td>
</tr>
<tr>
<td>2</td>
<td>INPUT1+</td>
<td>・</td>
<td>INPUT1用外部入力電源(+5V〜+24V)</td>
</tr>
</tbody>
</table>
| 3 | INPUT1− | 緊急停止 (ローアクティブ) | オン→オフレベル変化させた直後に、最大減速速度で緊急停止します。オフの間は運転を中止します。
(ノーマリーオープン、A接点) 自己保持はしません。 |
| 4 | INPUT2+ | ・ | INPUT2用外部入力電源(+5V〜+24V) |
| 5 | INPUT2− | 機能無し (ハイアクティブ) | 出荷時は機能が割り当てられていません。 |
| 6 | INPUT3 | 運転開始入力 (エッジ検出から100ms後に動作) | 立ち上がりエッジ（オフ→オン）から 100ms 後
ポジション指示0〜2入力にて指定されたポジションへの運転を開始します。
ポジション指示0〜2入力がすべてオフの場合はプログラム運転を開始または再開します。
立ち上がりエッジ（オン→オフ）から 100ms 後
ポジション運転、簡易プログラム運転いずれの時であっても減速停止し運転を一時停止します。 |
| 7 | INPUT4 | ポジション指示0入力 (ハイアクティブ) | 運転開始入力(INPUT3)の立ち上がりエッジ（オフ→オン）時に、ポジション指示0〜2入力のオン/オフ組み合わせのレベルを読み取ることで、ポジション1〜7を選択します。
(ノーマリーオープン、A接点) |
| 8 | INPUT5 | ポジション指示1入力 (ハイアクティブ) | 全入力オフは、簡易プログラム運転の起動に割り当てられます。 |
| 9 | INPUT6 | ポジション指示2入力 (ハイアクティブ) | 出荷時インポジション幅:±0.05mm（±25pulse） |
| 10 | INPUT COM | ・ | INPUT3〜6の共通コモンです。 |
| 11 | OUTPUT1 | 機能無し (ローアクティブ) | 出荷時は機能が割り当てられていません。 |
| 12 | OUTPUT2 | 機能無し (ローアクティブ) | 出荷時は機能が割り当てされていません。 |
| 13 | OUTPUT3 | インポジション出力 (ローアクティブ) | インポジション状態を通知します。
インポジション幅内に位置決めされている間は OUTPUT3がオフになります。
(ノーマリーオープン、A接点) |
| 14 | OUTPUT4 | アラーム出力 (ローアクティブ) | アラームが発生したことを通知します。
アラーム発生時は OUTPUT4がオフとなります。
(ノーマリーオープン、A接点) 自己保持はしません。 |
| 15 | OUTPUT COM | ・ | OUTPUT1〜4の共通コモンです。 |
| 16 | ANALOG IN | ・ | 何も接続しないでください。 |
| 17 | ANALOG OUT| トルクモニタ | トルク指令値に応じた電圧を出力します。
定格トルク±100％で 2.5V±1.67Vを出力します。 |
| 18 | N.C. | ・ | 何も接続しないでください。 |
| 19 | GND | ・ | 何も接続しないでください。 |
| 20 | GND | ・ | +5V、ANALOG IN、ANALOG OUT の共通グランドです。 |

27/116
6. 仕様

表 6.7 PA タームにて INPUT1,2 および OUTPUT1,2,3,4 に割当てできる機能と論理

<table>
<thead>
<tr>
<th>信号名</th>
<th>論理</th>
<th>割当て可能な機能</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT1</td>
<td>0:ハイアクティブ</td>
<td>機能無し</td>
<td>簡易プログラム内にステップ待ちが設定されている場合、レベル変化するまでプログラム運転を一時停止します。</td>
</tr>
<tr>
<td>INPUT2</td>
<td>1:ローアクティブ</td>
<td>汎用入力</td>
<td>プログラム運転を停止します。</td>
</tr>
<tr>
<td></td>
<td>2:ORG (原点センサ)</td>
<td>原点センサとして使用します。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3:ジョグ前進</td>
<td>アクティブの間、反モータ側へスライダを移動します。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4:ジョグ後退</td>
<td>アクティブの間、モータ側へスライダを移動します。</td>
<td></td>
</tr>
<tr>
<td>OUTPUT1</td>
<td>0:ローアクティブ</td>
<td>機能無し</td>
<td>簡易プログラム運転を停止します。</td>
</tr>
<tr>
<td>OUTPUT2</td>
<td>1:ハイアクティブ</td>
<td>インポジション</td>
<td>インポジション信号を出力します。</td>
</tr>
<tr>
<td>OUTPUT3</td>
<td>2: Alarm</td>
<td>アラーム</td>
<td>アラーム信号を出力します。</td>
</tr>
<tr>
<td>OUTPUT4</td>
<td>3:汎用出力</td>
<td>汎用出力</td>
<td>簡易プログラム内からオン／オフを指定します。</td>
</tr>
<tr>
<td></td>
<td>4:原点復帰完了</td>
<td>原点復帰完了時のみインポジション信号を出力します。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5:～ (割当て不可)</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td></td>
<td>6:～ (割当て不可)</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td></td>
<td>7:回転パルス出力</td>
<td>モータの回転速度に応じたパルスを出力します。</td>
<td></td>
</tr>
<tr>
<td>OUTPUT1</td>
<td>8:サーボオフ状態出力</td>
<td>サーボオフ時に出力します。</td>
<td></td>
</tr>
</tbody>
</table>

JST 製 XADR-20V

<table>
<thead>
<tr>
<th>ピン No.</th>
<th>線色</th>
<th>信号名</th>
<th>ピン No.</th>
<th>線色</th>
<th>信号名</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>茶</td>
<td>+5V</td>
<td>2</td>
<td>赤</td>
<td>INPUT1+</td>
</tr>
<tr>
<td>3</td>
<td>橙</td>
<td>INPUT1-</td>
<td>4</td>
<td>黄</td>
<td>INPUT2+</td>
</tr>
<tr>
<td>5</td>
<td>緑</td>
<td>INPUT2-</td>
<td>6</td>
<td>青</td>
<td>INPUT3</td>
</tr>
<tr>
<td>7</td>
<td>緑</td>
<td>INPUT4</td>
<td>8</td>
<td>灰</td>
<td>INPUT5</td>
</tr>
<tr>
<td>9</td>
<td>白</td>
<td>INPUT6</td>
<td>10</td>
<td>黒</td>
<td>INPUT COM</td>
</tr>
<tr>
<td>11</td>
<td>茶</td>
<td>OUTPUT1</td>
<td>12</td>
<td>赤</td>
<td>OUTPUT2</td>
</tr>
<tr>
<td>13</td>
<td>橙</td>
<td>OUTPUT3</td>
<td>14</td>
<td>黄</td>
<td>OUTPUT4</td>
</tr>
<tr>
<td>15</td>
<td>緑</td>
<td>OUTPUT COM</td>
<td>16</td>
<td>青</td>
<td>ANALOG IN</td>
</tr>
<tr>
<td>17</td>
<td>紫</td>
<td>ANALOG OUT</td>
<td>18</td>
<td>灰</td>
<td>N.C.</td>
</tr>
<tr>
<td>19</td>
<td>白</td>
<td>GND</td>
<td>20</td>
<td>黒</td>
<td>GND</td>
</tr>
</tbody>
</table>

図 6.5 I/O コネクタ ピン配置
表 6.8 I/O コネクタ信号 電気仕様

<table>
<thead>
<tr>
<th>信号名</th>
<th>項目</th>
<th>条件</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>入出力回路</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5V</td>
<td>出力電圧</td>
<td>+5V～GND 間</td>
<td>4.3V</td>
<td>4.8V</td>
<td>5.2V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>出力電流</td>
<td></td>
<td>-</td>
<td>-</td>
<td>0.2A</td>
<td></td>
</tr>
<tr>
<td>INPUT1</td>
<td>印加電圧</td>
<td>INPUT1+ ～INPUT1-間</td>
<td>0V</td>
<td>-</td>
<td>24V</td>
<td></td>
</tr>
<tr>
<td>INPUT2</td>
<td>ローレベル入力電圧（オン）</td>
<td>INPUT1+ ～INPUT1-間</td>
<td>0V</td>
<td>-</td>
<td>0.8V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ハイレベル入力電圧（オフ）</td>
<td>INPUT1+ ～INPUT1-間</td>
<td>3V</td>
<td>-</td>
<td>24V</td>
<td></td>
</tr>
<tr>
<td>INPUT3</td>
<td>印加電圧</td>
<td>INPUT3,4,5,6 ～INPUT COM 間</td>
<td>0V</td>
<td>-</td>
<td>24V</td>
<td></td>
</tr>
<tr>
<td>INPUT4</td>
<td>ローレベル入力電圧（オン）</td>
<td>INPUT3,4,5,6 ～INPUT COM 間</td>
<td>0V</td>
<td>-</td>
<td>0.8V</td>
<td></td>
</tr>
<tr>
<td>INPUT5</td>
<td>ハイレベル入力電圧（オフ）</td>
<td>INPUT3,4,5,6 ～INPUT COM 間</td>
<td>3V</td>
<td>-</td>
<td>24V</td>
<td></td>
</tr>
<tr>
<td>INPUT6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT1</td>
<td>耐圧</td>
<td>OUTPUT1,2,3,4 ～OUTPUT COM 間</td>
<td>-</td>
<td>-</td>
<td>30V</td>
<td></td>
</tr>
<tr>
<td>OUTPUT2</td>
<td>連続負荷電流</td>
<td>OUTPUT1,2,3,4 ～OUTPUT COM 間</td>
<td>-</td>
<td>-</td>
<td>20mA</td>
<td></td>
</tr>
<tr>
<td>OUTPUT3</td>
<td>オフ・リーク電流</td>
<td></td>
<td>-</td>
<td>0.1</td>
<td>1nA</td>
<td></td>
</tr>
<tr>
<td>OUTPUT4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANALOG IN</td>
<td>入力電圧</td>
<td>ANALOG IN ～GND 間</td>
<td>0V</td>
<td>-</td>
<td>5V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>動作電圧</td>
<td>ANALOG IN ～GND 間</td>
<td>0.2V</td>
<td>-</td>
<td>4.8V</td>
<td></td>
</tr>
<tr>
<td>ANALOG OUT</td>
<td>出力電圧</td>
<td>ANALOG OUT ～GND 間</td>
<td>1V</td>
<td>-</td>
<td>4V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>出力電流</td>
<td>ANALOG OUT ～GND 間</td>
<td>-</td>
<td>-</td>
<td>7mA</td>
<td></td>
</tr>
</tbody>
</table>

※1 INPUT1,2 は極性有りのフォトカプラ入力回路です。定電流ダイオードを備えており、外電源電圧に関わらず入力電流は 8～12mA となります。

※2 INPUT3,4,5,6 は極性無しのフォトカプラ入力回路です。マイナスコモンとしても使用できます。10kΩの直列抵抗を備えています。

※3 OUTPUT1,2,3,4 は極性無しの FET 出力回路です。マイナスコモンとしても使用できます。1kΩの直列抵抗を備えています。
6.4.3 ホスト通信コネクタ

表 6.9 ホスト通信コネクタ信号名一覧

<table>
<thead>
<tr>
<th>ピン No.</th>
<th>信号名</th>
<th>出荷時設定</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RXD0</td>
<td>固定</td>
<td>RS-232C 受信入力</td>
</tr>
<tr>
<td>2</td>
<td>TXD0</td>
<td>固定</td>
<td>RS-232C 送信出力</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>固定</td>
<td>グランド</td>
</tr>
</tbody>
</table>

表 6.10 ホスト通信コネクタ 通信仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>出荷時設定</th>
</tr>
</thead>
<tbody>
<tr>
<td>ビット/秒</td>
<td>38400bps</td>
</tr>
<tr>
<td>データビット</td>
<td>8</td>
</tr>
<tr>
<td>パリティ</td>
<td>なし</td>
</tr>
<tr>
<td>ストップビット</td>
<td>1</td>
</tr>
<tr>
<td>フロー制御</td>
<td>なし</td>
</tr>
</tbody>
</table>

図 6.6 ホスト通信コネクタ ピン配置

表 6.11 ホスト通信コネクタ信号 電気仕様

<table>
<thead>
<tr>
<th>信号名</th>
<th>項目</th>
<th>条件</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>入出力回路</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXD0</td>
<td>入力電圧</td>
<td></td>
<td>-25V</td>
<td>-</td>
<td>25V</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>立上り入力電圧閾値</td>
<td></td>
<td>-</td>
<td>1.8V</td>
<td>2.4V</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>立下り入力電圧閾値</td>
<td></td>
<td>0.8V</td>
<td>1.5V</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>入力抵抗</td>
<td></td>
<td>3 kΩ</td>
<td>5 kΩ</td>
<td>7 kΩ</td>
<td>-</td>
</tr>
<tr>
<td>TXD0</td>
<td>出力電圧（最大）</td>
<td></td>
<td>-13.2V</td>
<td>-</td>
<td>13.2V</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>出力電圧スイング幅</td>
<td></td>
<td>±5V</td>
<td>±5.4V</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

6.4.4 スレーブ通信コネクタ

■ 使用しませんので割愛します。
6.5 専用ソフトウェア仕様

- ポジショニングアクチュエータ専用ソフトウェア「PA ターム」の基本仕様を示します。
- インストール方法については、「7.5 パーソナルコンピュータおよびソフトウェアの準備」を参照してください。
- 使用方法については、「8. 運転」を参照してください。

表 6.10 PA ターム基本仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>動作環境</td>
<td>パーソナルコンピュータ</td>
</tr>
<tr>
<td>パーソナルコンピュータ</td>
<td>下記 OS が動作する PC/AT 互換機が必要です。</td>
</tr>
<tr>
<td></td>
<td>- CPU Pentium III クラス 600 MHz 推奨：Pentium IV 1 GHz 以上</td>
</tr>
<tr>
<td></td>
<td>- RAM 256M Bytes 推奨：512M Bytes 以上</td>
</tr>
<tr>
<td></td>
<td>- HDD 100M Bytes free space 推奨：1G Bytes free space 以上</td>
</tr>
<tr>
<td></td>
<td>- モニタ 1024 X 768dots、256 色 推奨：High Color 16 ビット以上</td>
</tr>
<tr>
<td>対応 OS</td>
<td>Windows 2000 Professional ※1 Windows XP ※1 ※ 2</td>
</tr>
<tr>
<td></td>
<td>- Windows Vista ※ 2 Windows 7 ※ 2</td>
</tr>
<tr>
<td></td>
<td>※1 Windows 2000 Professional および Windows XP 上にて PA タームを動作させるには、Microsoft .NET Framework のバージョン 2.0 が必要です。</td>
</tr>
<tr>
<td></td>
<td>※2 32bit, 64bit 版どちらにも対応しております。</td>
</tr>
<tr>
<td>通信ポート</td>
<td>RS-232C 準拠の通信ポートが必要です。通信速度範囲：9600bps～38400bps</td>
</tr>
<tr>
<td>位置リスト数</td>
<td>最大 7 ポジション、位置リストに位置、速度、加速度を書き込みます。</td>
</tr>
<tr>
<td>位置リスト</td>
<td>スライダの原点位置に対する絶対位置を以下の方法で指定します。</td>
</tr>
<tr>
<td></td>
<td>- 数値入力</td>
</tr>
<tr>
<td></td>
<td>- 位置取り込み（ティーチング）</td>
</tr>
<tr>
<td></td>
<td>相対位置の指定はできません。</td>
</tr>
<tr>
<td></td>
<td>最小設定単位は 2μm です。</td>
</tr>
<tr>
<td></td>
<td>設定範囲はソフトリミット反モータ側～ソフトリミットモータ側の間です。</td>
</tr>
<tr>
<td>速度</td>
<td>速度を数値入力で指定します。</td>
</tr>
<tr>
<td></td>
<td>最小設定単位は 0.1mm/s です。</td>
</tr>
<tr>
<td></td>
<td>設定範囲は 0.1 mm/s ～ポジショニングアクチュエータ各呼び番号の最高速度の間です。</td>
</tr>
<tr>
<td>加速度</td>
<td>加速度を数値入力で指定します。</td>
</tr>
<tr>
<td></td>
<td>最小設定単位は 2mm/s² です。設定範囲は 2～9800mm/s² の間です。</td>
</tr>
</tbody>
</table>

ポジション運転

<table>
<thead>
<tr>
<th>機能</th>
<th>筆易プログラム運転に割り当て</th>
</tr>
</thead>
<tbody>
<tr>
<td>ポジション指示0入力 (INPUT4)</td>
<td>1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>ポジション指示1入力 (INPUT5)</td>
<td>- - - - - - -</td>
</tr>
<tr>
<td>ポジション指示2入力 (INPUT6)</td>
<td>- - - - - - -</td>
</tr>
</tbody>
</table>

ポジション指示0～2入力すべてオフは、簡易プログラム運転に割り当てられます。
専用ウェア仕様続き

<table>
<thead>
<tr>
<th>項目</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>機能</td>
<td>ポジション指示 0〜2 入力すべてオフとし、運転開始信号（INPUT3）のレベルを変化（オフ→オン）させることにより、ステップ 1 から空欄ステップまでを順番に実行します。</td>
</tr>
<tr>
<td>ステップ数</td>
<td>最大 40 ステップ、ステップには以下のいずれかを書き込みます。</td>
</tr>
</tbody>
</table>
| | - 位置リスト番号（P1〜P7）
| | - タイマー（T1〜T8）
| | - 入力待ち（IN1, IN2）
| | - 出力（ON1〜4, OFF1〜4）
| | - 未使用（NA） |
| **ファイル操作** | 位置リストの内容を CSV 形式にて読み込み・保存します。 |
| **簡易プログラム** | 簡易プログラムの内容を CSV 形式にて読み込み・保存します。 |
| **設定機能** | 変更可能なバラメータを操作・保存します。 |
| | - 入出力設定 |
| | - 画面パワパルス出力の分解能 |
| | - INPUT1, 2 の論理設定および機能設定 |
| | - OUTPUT1, 2, 3, 4 の論理設定および機能設定 |
| | - 原点復帰設定 |
| | - 原点復帰方式 |
| | - 原点オフセット |
| | - その他の設定 |
| | - インポジション幅 |
| | - 位置偏差しきい値 |
| | - 過荷負荷検出時間 |
| | - ソフトリミット反モータ側 |
| | - ソフトリミットモータ側 |
| **出荷状態に戻す** | 全バラメータとタイマーの内容を出荷状態に戻します。 |
| | また、位置リストと簡易プログラムを消去します。 |
| **ジョグ操作** | 画面上のボタンを押している間だけ、設定した速度にてスライダを移動します。 |
| **インチング操作** | 画面上のボタンを押す毎に、設定した距離だけスライダを移動します。 |
| **ティーチング** | 画面上の位置リストに応じたボタンを押すことで、現在のスライダ位置を位置リストに取り込みます。 |
| **擬似入力** | INPUT1〜6 を画面上のボタンから操作することで、動作確認を行います。 |
| **機械情報表示** | ポジションングアクチュエータの下記情報を表示します。 |
| | - ポジションングアクチュエータ呼び番号 |
| | - ポジションングアクチュエータ呼び番号 |
| | - 最大ストローク |
| | - 最高速度 |
| | - 最大加速度 |
| **その他機能** | 接続したポジションングアクチュエータの下記項目を自動設定します。 |
| | - RS-232C ポート（COM ポート）の選択および通信速度 |
| | - ポジションングアクチュエータ呼び番号に応じた機械情報およびソフトウェアリミット最大値 |
| | - ポジションングアクチュエータ呼び番号に応じた押当て原点復帰認識トルク |
| **グラフ表示** | 動作速度およびスライダ位置をリアルタイムにグラフ描画します。 |
| | - 描画されたグラフを JPG 形式で保存します。 |
| **モーション計算機** | 下記 4 項目のバラメータの 3 項目から、残り 1 項目のバラメータを算出します。 |
| | - 適度時間、最高速度 |
| | - 距離 |
| | - 加速度 |
7. 運転準備

7.1 開梱

7.1.1 開梱に関する安全事項

警告

梱包箱からポジショニングアクチュエータを取り出す際や設置の際は、お客様における重量物取り扱い規定に従い、作業人数や作業工程を設定してください。ポジショニングアクチュエータの重量は表7.1を参照してください。

表 7.1 ポジショニングアクチュエータ 重量一覧

<table>
<thead>
<tr>
<th>呼び番号</th>
<th>ストローク</th>
<th>重量</th>
</tr>
</thead>
<tbody>
<tr>
<td>XY-HS0030-M05</td>
<td>300mm</td>
<td>3.5kg</td>
</tr>
<tr>
<td>XY-HS0040-M05</td>
<td>400mm</td>
<td>3.9kg</td>
</tr>
<tr>
<td>XY-HS0050-M05</td>
<td>500mm</td>
<td>4.3kg</td>
</tr>
<tr>
<td>XY-HS0060-M05</td>
<td>600mm</td>
<td>4.7kg</td>
</tr>
<tr>
<td>XY-HS0030-M08</td>
<td>300mm</td>
<td>8kg</td>
</tr>
<tr>
<td>XY-HS0040-M08</td>
<td>400mm</td>
<td>8.9kg</td>
</tr>
<tr>
<td>XY-HS0050-M08</td>
<td>500mm</td>
<td>9.9kg</td>
</tr>
<tr>
<td>XY-HS0060-M08</td>
<td>600mm</td>
<td>10.5kg</td>
</tr>
<tr>
<td>XY-HS0070-M08</td>
<td>700mm</td>
<td>12kg</td>
</tr>
<tr>
<td>XY-HS0080-M08</td>
<td>800mm</td>
<td>12.7kg</td>
</tr>
<tr>
<td>XY-HS0090-M10</td>
<td>900mm</td>
<td>23.2kg</td>
</tr>
<tr>
<td>XY-HS00100-M10</td>
<td>1000mm</td>
<td>24.9kg</td>
</tr>
</tbody>
</table>

注意

禁止

梱包箱からポジショニングアクチュエータを取り出す際や設置の際は、モータおよびケーブルを持たずに、モノキャリア部を持つようにしてください。故障や断線の原因になります。

7.1.2 現品確認

■ 梱包箱の内容物を以下に示します。内容物をご確認ください。

・ ポジショニングアクチュエータ本体

・ 付属ケーブル3種（電源ケーブル、I/Oケーブル、通信ケーブル）

・ 同梱資料
7.2 設置

7.2.1 設置に関する安全事項

危険

コントローラー一体型 AC サーボモータは密閉構造ではありません。水や油などの液体、紙くずなどの可燃性異物、金属片などの導電性異物が入らない環境に設置してください。感電や火災、故障、寿命低下の原因になります。

指示

表 7.2 に示す環境条件に設置してください。感電や火災、故障の原因になります。

<table>
<thead>
<tr>
<th>項目</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>周囲温度</td>
<td>0～40℃</td>
</tr>
<tr>
<td>保存温度</td>
<td>-20～60℃（凍結なきこと）</td>
</tr>
<tr>
<td>湿度</td>
<td>90%以下（結露なきこと）</td>
</tr>
<tr>
<td>標高</td>
<td>海抜 1000m 以下</td>
</tr>
<tr>
<td>振動</td>
<td>9.8m/s² (1G) 以下</td>
</tr>
<tr>
<td>衝撃</td>
<td>98m/s² (10G) 以下</td>
</tr>
<tr>
<td>環境</td>
<td>屋内（直射日光が当らないこと）腐食性ガス、引火性ガス、オイルミスト、粉塵のなきこと</td>
</tr>
</tbody>
</table>

警告

ポジショニングアクチュエータにはメカニカルブレーキおよびダイナミックブレーキが付いておりませんので、垂直軸（Z 軸）や傾斜軸では使用しないでください。再生過大時や電源遮断時、緊急停止時、各種アラーム発生時に負荷が下降し、けがの原因になります。

禁止

スライダを手動で逆作動させる場合は、50mm/s 以下としてください。電源を切った状態であっても、上記速度以上で勢い良くスライダを逆作動させると再生電力によりコントローラー一体型 AC サーボモータが起動しスライダが急にロックし、けがの原因になります。

警告

ポジショニングアクチュエータが機台に確実に固定されていることを確認してください。けがや破損の原因になります。

禁止

お客様で設置される積載物がスライダに確実に固定されていることを確認してください。けがや破損の原因になります。

注意

禁止

ポジショニングアクチュエータは精密機器です。落下させたり、強い衝撃を与えたりしないでください。破損や故障の原因になります。
禁　止 コントローラ一体型 AC サーボモータに設けられた通気孔を塞がないでください。過熱アラームが発生する原因となります。

図 7.1 通気孔位置

指　示 ケーブル類は、回転部や可動部に接触しないように取り回してください。断線の原因となります。

指　示 ポジショニングアクチュエータを設置する際に使用する六角穴付きボルト、および積載物をスライダへ取り付ける際に使用するボルトは、表 7.3 に示した規定トルクで締め付けてください。

ポジショニングアクチュエータを設置する相手側取付け部材がアルミニウムの場合、ボルト材質に関わらずステンレス製ボルトの規定トルクで締付けてください。

<table>
<thead>
<tr>
<th>適合シリーズ</th>
<th>ポジショニングアクチュエータ呼び番号</th>
<th>ストローク</th>
<th>使用ボルトサイズ</th>
<th>ステンレス製ボルト（強度区分 A2-70相当）</th>
<th>鉄製ボルト（強度区分 10.9相当）</th>
</tr>
</thead>
<tbody>
<tr>
<td>軽負荷位置決め用</td>
<td>XY-HS0030-M05</td>
<td>300mm</td>
<td>M4</td>
<td>2.7N·m</td>
<td>3.6 N·m</td>
</tr>
<tr>
<td></td>
<td>XY-HS0040-M05</td>
<td>400mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0050-M05</td>
<td>500mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0060-M05</td>
<td>600mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中負荷位置決め用</td>
<td>XY-HS0030-M08</td>
<td>300mm</td>
<td>M6</td>
<td>9.0 N·m</td>
<td>12.2 N·m</td>
</tr>
<tr>
<td></td>
<td>XY-HS0040-M08</td>
<td>400mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0050-M08</td>
<td>500mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0060-M08</td>
<td>600mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0070-M08</td>
<td>700mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0080-M08</td>
<td>800mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>重負荷位置決め用</td>
<td>XY-HS0090-M10</td>
<td>900mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0100-M10</td>
<td>1000mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. 運転準備

7.2.2 取付け面の精度

警告

本アクチュエータを据付ける機台の面は、お客様にて必要な走り平行度を考慮した精度に仕上げてください。

指示

走り平行度を必要としない場合は、平面度 0.1mm 程度に仕上げた面として、有害な突起がないように考慮願います。

- 表 7.4 に本アクチュエータの走り平行度を示しますので、参考にしてください。

<table>
<thead>
<tr>
<th>適合シリーズ</th>
<th>ポジショニングアクチュエータ</th>
<th>呼び番号</th>
<th>ストローク</th>
<th>走り平行度 (上下方向)</th>
</tr>
</thead>
<tbody>
<tr>
<td>軽負荷位置決め用</td>
<td>XY-HS0030-M05</td>
<td>300mm</td>
<td>0.008mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0040-M05</td>
<td>400mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0050-M05</td>
<td>500mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0060-M05</td>
<td>600mm</td>
<td>0.012mm</td>
<td></td>
</tr>
<tr>
<td>中負荷位置決め用</td>
<td>XY-HS0030-M08</td>
<td>300mm</td>
<td>0.010mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0040-M08</td>
<td>400mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0050-M08</td>
<td>500mm</td>
<td>0.012mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0060-M08</td>
<td>600mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0070-M08</td>
<td>700mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0080-M08</td>
<td>800mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>重負荷位置決め用</td>
<td>XY-HS0090-M10</td>
<td>900mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0100-M10</td>
<td>1000mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 本アクチュエータの平行度測定は、図 7.2 にて示すように、アクチュエータを固定しない状態にて、スライダに取り付けたインジケータから、アクチュエータ底面にて、スライダを移動させながら測定した際の値を示しています。

図 7.2 走り平行度(上下方向)測定方法
7.運転準備

7.3 配線

7.3.1 配線に関する安全事項

警告

禁止 ケーブルは引っ張ったり、傷つけたり、無理なストレスをかけたり、重いものを載せたり、挟み込んだりしないでください。感電や漏電、故障の原因になります。

指示 確実に接地を行ってください。接地は 1 点接地で D 種（接地抵抗 100Ω以下）としてください。感電や誤動作の原因になります。

指示 AC 電源には安全回路および保護回路を設置してください。異常時には即座に電源を遮断してください。

注意

禁止 各端子には決められた電圧以外は印加しないでください。故障の原因になります。

禁止 ケーブル先端のコネクタおよび端子は改造しないでください。故障や断線の原因になります。

禁止 ポジショニングアクチュエータから直出しされたケーブルは可動部に使用しないでください。断線の原因になります。また、付属ケーブルおよびオプションケーブルも可動部に使用しないでください。

指示 電源電圧および電源容量はポジショニングアクチュエータのシリーズごとに異なります。「6. 仕様」を確認してください。

指示 各ケーブルの曲げ半径は表 7.5 に従ってください。

表 7.5 各ケーブルの曲げ半径

<table>
<thead>
<tr>
<th>ケーブル</th>
<th>曲げ半径</th>
</tr>
</thead>
<tbody>
<tr>
<td>直出し</td>
<td>電源ケーブル</td>
</tr>
<tr>
<td></td>
<td>I/O ケーブル (通信ケーブル含む)</td>
</tr>
<tr>
<td>付属ケーブル</td>
<td>電源ケーブル</td>
</tr>
<tr>
<td></td>
<td>I/O ケーブル</td>
</tr>
<tr>
<td></td>
<td>通信ケーブル</td>
</tr>
<tr>
<td>オプション品ケーブル</td>
<td>電源ケーブル</td>
</tr>
<tr>
<td></td>
<td>I/O ケーブル</td>
</tr>
<tr>
<td></td>
<td>通信ケーブル</td>
</tr>
</tbody>
</table>

指示 ケーブル類は、回転部や可動部に接触しないように取り回してください。断線の原因となります。

指示 電源コネクタから先の配線には、AWG18 もしくは更に太い電線を使用してください。
7. 運転準備

指示 高調波抑制対策としてノイズフィルタの設置を推奨します。

<table>
<thead>
<tr>
<th>入力形式</th>
<th>定格電圧</th>
<th>定格電流</th>
</tr>
</thead>
<tbody>
<tr>
<td>単相 AC100V, AC200V</td>
<td>FN2070-10</td>
<td>AC250V, AC10A</td>
</tr>
</tbody>
</table>

指示 ポジショニングアクチュエータとノイズフィルタとは、できるだけ近距離に配置してください。

指示 ポジショニングアクチュエータの電源回路にはコンデンサが接続されているため、電源投入時に突入電流が流れます。AC 電源回路に用いる漏電ブレーカなどの機器の接点容量は、表 7.7 に示す定格電流以上のものを選定してください。

<table>
<thead>
<tr>
<th>AC 電源回路機器</th>
<th>定格電流 10A、感度 15mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>漏電ブレーカ</td>
<td></td>
</tr>
<tr>
<td>ノーヒューズブレーカ</td>
<td>定格電流 10A</td>
</tr>
<tr>
<td>マグネットスイッチ</td>
<td>定格電流 10A</td>
</tr>
</tbody>
</table>

指示 マグネットスイッチ、リレー、ソレノイドなどのコイルには、ノイズの発生を防ぐためにサージ吸収回路を必ず挿入してください。誤動作の原因になります。詳細は各メーカーのカタログなどをご確認してください。

指示 ノイズフィルタの一次側と二次側配線は分離してください。また別々のルートで配線してください。

指示 電源ケーブルは信号系統とは離して配線してください。束線したり同一ダクト内に通したりしないでください。誤動作の原因になります。

指示 付属ケーブルを用いる場合は、バラ線部はチューブを被覆するなどしてループができないよう処理してください。誤動作の原因になります。
7.3.2 電源コネクタ配線

- 付属電源ケーブルもしくはオプション電源ケーブルを介して、AC電源回路に接続します。

 ピン配置や電気仕様は「6.4.1 電源コネクタ」を参照してください。

- 配線例は図7.3に示します。

注意

指示: フォトカプラ用DC電源やシーケンサなど、ポジショニングアクチュエータのI/O コネクタへ接続している外部機器や上位機器の電源を先に投入し、電圧レベルや初期シーケンスなどが確定した後にポジショニングアクチュエータの電源を投入するAC電源回路としてください。

原点復帰が正常に行われない、正常に動作しないなどの誤動作の原因となります。

図7.3 電源コネクタ配線例（100V/200V単相）
7.3.3 I/Oコネクタ配線

- 付属 I/O ケーブルもしくはオプション I/O ケーブルを介して、シーケンサなどの上位機器やスイッチなどに接続します。ピン配置や電気仕様は「6.4.2 I/O コネクタ」を参考してください。
- 配線例を図 7.4~図 7.5 に示します。ポジション運転および簡単プログラム運転の概要については、「5.3 外部機器構成」を参考してください。

注意

フォトカプラ用 DC 電源やシーケンサなど、ポジショニングアクチュエータの I/O コネクタへ接続している外部機器や上位機器の電源を先に投入し、電压レベルや初期シーケンスなどが確定した後にポジショニングアクチュエータの電源を投入してください。原点復帰が正常に行われない、正常に動作しないなどの誤動作の原因となります。

図 7.4 ポジション運転時の I/O コネクタ配線例
7. 運転準備

![運転準備](image)

7.3.4 ホスト通信コネクタ配線

- オプション通信ケーブルもしくは付属通信ケーブルを介して、パーソナルコンピュータやシェンなどのホスト機器の RS-232C ポートに接続します。
 - ピン配置や電気仕様は「6.4.3 ホスト通信コネクタ」を参照してください。
- 付属通信ケーブルを使用してホスト機器の RS-232C ポート（D-Sub9 ピン）に接続する場合は、図 7.6 に従って接続してください。

![付属通信ケーブル・D-Sub9 ピンコネクタ 配線図](image)

7.3.5 スレーブ通信コネクタ配線

- 使用しませんので割愛します。
7.3.6 原点センサおよびオーバートラベルセンサ配線

- オーバートラベルセンサを用いるにあたり、以下の制限事項があります。
 お客様の装置仕様に支障を来たす恐れがありますので確認をお願いします。

⚠️ 警告 ⚠️
お客様が機能および論理を変更できる入力ポートは INPUT1 および INPUT2 の 2 ポートです。オーバートラベルセンサをこの 2 ポートに割り当ると入力ポートの空きが無くなりますので、コントローラー体型 AC サーボモータへの緊急停止指令を入力できなくなってしまいます。
緊急時にコントローラー体型 AC サーボモータの電源を即時に遮断できるような緊急停止回路を外部機器として設置してください。

⚠️ 注意 ⚠️
オーバートラベルセンサを用いると押当て原点復帰ができなくなります。加えて入力ポートの空きが無くなるため、OTL（モータ側オーバートラベルセンサ）を ORG（原点センサ）として兼用とする必要があります。よって ORG を越えてのモータ側への位置決めはできません。
お客様の装置仕様において問題が無いか確認をお願いします。

詳しくは図 7.7 をご覧ください。

- OTL（モータ側オーバートラベルセンサ）兼 ORG（原点センサ）
- OTR（反モータ側オーバートラベルセンサ）
7. 運転準備

指示
オーバートラベルセンサを含め、フォトカプラ用 DC 電源やシーケンサーなど、ポジショニングアクチュエータの I/O コネクタへ接続している外部機器や上位機器の電源を先に投入し、電圧レベルや初期シーケンスなどが確定した後にポジショニングアクチュエータの電源を投入してください。

原点復帰が正常に行われない、正常に動作しないなどの誤動作の原因となります。

- センサおよび入力ポートのフォトカプラ電源として DC5〜24V の外部電源が必要です。
- 配線例を図 7.8 に示します。ポジション運転および簡易プログラム運転の概要については、「5.3 外部機器構成」を参照してください。

図 7.8 ポジション運転時（オーバートラベルセンサ兼原点センサ設置）I/O コネクタ配線例
7.4 電源投入

7.4.1 電源投入時の安全事項

- ポジショニングアクチュエータは電源投入後すぐにモータへの通電を開始し、自動的に原点復帰を行います。不慮のシステムダウンからの復旧時にもモータへの通電および原点復帰を開始します。
- お客様の装置仕様に支障を来たす恐れがありますので確認をお願いします。

警告

- ポジショニングアクチュエータはモータの磁極検出を目的に、電源投入直後から約3秒間、モータへの通電を行います。その際、いずれかの方向へ約3mm動作します。
- 電源投入時には、お客様で設置される積載物を含め、カップリングやねじ軸、スライダなどの可動部には触れないでください。けがの原因になります。

禁止

- ポジショニングアクチュエータは原点復帰を行わせるための入力ポートを有しておりません。よって電源投入後、自動で原点復帰を行います。
- 出荷時設定では、電源投入後磁極検出が完了した後にモータ側へスライダが移動し、モータ側の限界ストロークエンドを検出した後にオフセット位置まで戻る順序にて原点復帰を行います。
- 電源投入後においても、お客様で設置される積載物を含め、カップリングやねじ軸、スライダなどの可動部には触れないでください。けがの原因になります。

注意

- お客様で設置される積載物を含め、カップリングやねじ軸、スライダなどの可動部をロックしたままで電源を投入しないでください。磁極検出ができずサーボオフされません。
- ロック状態で電源が投入された際は、4～5秒後にモータへの通電が遮断され、ステータスLEDが赤色で連続点灯している状態（サーボオフ）となります。
- 電源のオン/オフを頻繁に行わないでください。電源遮断後は1分以上時間をおいてから再投入してください。内部回路素子の劣化につながります。

禁止

- 電源投入時は、フォトカプラ用DC電源やシーケンサなど、ポジショニングアクチュエータのI/O コネクタへ接続している外部機器や上位機器の電源を投入し、電圧レベルや初期シーケンスなどが確定した後にポジショニングアクチュエータの電源を投入してください。原点復帰が正常に行われないなどの誤動作の原因となります。
指示 I/O コネクタの INPUT1 は、出荷状態においては「緊急停止」（ローアクティブ）に設定されております。よって未配線状態では緊急停止状態となり、動作させることができません。また、この状態では専用ソフトウェア「PA ターム」を起動しても操作することができません。配線処理を行ってください。

緊急停止状態では、ステータス LED の青色が連続点灯したまま赤色が 6 回点滅している状態（緊急停止状態）となります。
7.4.2 電源投入時の確認事項（出荷時設定）

指示
正常に原点復帰が完了することを確認してください。正常に原点復帰が完了することを確認してください。

① 配線確認
- 図7.4および図7.5に配線例を示します
- 外部機器や上位機器とポジショニングアクチュエータが正しく配線されているか確認してください。

② 外部機器や上位機器へ電源を投入

③ ポジショニングアクチュエータへ電源を投入
- 電源を投入すると、出荷時設定においては以下の順序にて動作します。
 磁極検出動作
 - 電源投入直後から約3秒間、モータへ通電して磁極検出を行います。その際、いずれかの方向へ約3mm動作します。
 - 正常に磁極検出が行われた場合はサーボオフし、ステータスLEDが青色で点灯します。その後、自動で押当て原点復帰に移行します。
 - 正常に磁極検出が行われなかった場合は4〜5秒後にサーボオフし、ステータスLEDが赤色で点灯します。電源を遮断し、お客様で設置される積載物を含め、カップリングやねじ軸、スライダなどの可動部が機械的にロックされていないか確認してください。

押当て原点復帰
- スライダがモータ側の限界ストロークエンドまで10mm/sの速度で移動します。
- モータ側の限界ストロークエンドへスライダのシール端を押しつけて、モータトルクが設定値に達した時点で限界ストロークエンドとして認識します。
- モータ側の限界ストロークエンドへスライダが接触する前に、お客様で設置される積載物が機台に触れるなどしてモータトルクが設定値に達すると、その時点で限界ストロークエンドとして誤認識してしまう恐れがあります。目視にて確認してください。
- 限界ストロークエンドを検出すると、次はスライダが反モータ側へ15mm（原点オフセット、出荷時設定）移動します。この位置が原点となります。

④ 原点復帰の完了
- サーボオフしたまま原点位置で停止します。
7.4.3 電源投入時の確認事項（オーバトラベルセンサ使用時）

![指示] オーバートラベルセンサを用いる場合、入力ポートの機能割当てを変更する必要があります。

以下手順に従って設定を行い、正常に原点復帰が完了することを確認してください。

① 外部機器および上位機器とポジショニングアクチュエータが正しく配線されているか確認
図7.8に配線例を示します。
オーバートラベルセンサをINPUT1および2に接続してください。

② 外部機器および上位機器へ電源を投入

③ ポジショニングアクチュエータへ電源を投入
オーバートラベルセンサを遮光時オフとしている場合

・ 電源投入直後から約3秒間、モータへ通電して磁極検出を行います。その後、いずれかの方向へ約3mm動作します。
・ 正常に磁極検出が行われなかった場合は4～5秒後にサーボオフし、ステータス LEDが赤色で点灯します。この場合は電源を遮断し、お客様で設置される積載物を含め、カップリングやねじ軸、スライダなどの可動部が機械的にロックされていないか確認してください。
・ 正常に磁極検出が行われた場合はサーボオンし、ステータス LEDが青色で点灯します。その後、自動で原点復帰に移行します。
・ スライダがモータ側へ移動します。
 INPUT1に接続しているオーバートラベルセンサ（図7.8ではOTL兼ORG）にドッグが差し掛かった場合は、その時点で緊急停止と認識されスライダが停止し、ステータス LEDの青色が連続点灯したまま赤色が6回点減している状態（緊急停止状態）となります。
 INPUT1にOTRを接続している場合は、前章「7.4.2 電源投入時の確認事項（出荷時設定）」に示す押当て原点復帰を行います。

オーバートラベルセンサを遮光時オンとしている場合

・ 電源投入直後から緊急停止と認識され、ステータス LEDの青色が連続点灯したまま赤色が6回点減している状態（緊急停止状態）となります。
4. ターミナルソフトの設定と通信の確認
 「11.2 ターミナルソフトの設定」の「11.2.1 通信ケーブルの配線」～「11.2.4 ポジショニングアクチュエータとの通信の確認」に従いパーソナルコンピュータとポジショニングアクチュエータを接続し、正常に通信ができていることを確認してください。

5. 入力ポートの機能割当て変更

配線状態に応じたコマンドの入力
 - オーバートラベルセンサの論理と接続する入力ポートにより、機能割当て変更に用いるコマンドが異なります。表7.8に示す組み合わせに応じたコマンドをターミナルソフトの画面に入力してください。

<table>
<thead>
<tr>
<th>オーバートラベルセンサ</th>
<th>センサ配線</th>
<th>コマンド</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT1にOTL兼ORGセンサ</td>
<td>INPUT2にOTRセンサ</td>
<td>K26=000011** (改行) K27=000069** (改行) K46=3* (改行)</td>
</tr>
<tr>
<td>INPUT1にOTRセンサ</td>
<td>INPUT2にOTL兼ORGセンサ</td>
<td>K26=000011** (改行) K27=000096** (改行) K46=3* (改行)</td>
</tr>
<tr>
<td>INPUT1にOTL兼ORGセンサ</td>
<td>INPUT2にOTRセンサ</td>
<td>K26=000000** (改行) K27=000096** (改行) K46=3* (改行)</td>
</tr>
<tr>
<td>INPUT1にOTRセンサ</td>
<td>INPUT2にOTL兼ORGセンサ</td>
<td>K26=000000** (改行) K27=000096** (改行) K46=3* (改行)</td>
</tr>
</tbody>
</table>

変更確認
 - ターミナルソフトの画面に「K26* (改行)」と入力すると、前章で入力した「K26=******」がコールバックされますので、間違いがないか確認してください。
 - ターミナルソフトの画面に「K27* (改行)」と入力すると、前章で入力した「K27=******」がコールバックされますので、間違いがないか確認してください。
 - ターミナルソフトの画面に「K46* (改行)」と入力すると、前章で入力した「K46=3」がコールバックされますので、間違いがないか確認してください。

6. 通信を切断
 - 「11.2 ターミナルソフトの設定」の「11.2.5 通信の切断」に従い、通信を切断します。

7. ポジショニングアクチュエータの電源を遮断
 - 外部機器電源は切断する必要はありません。
6. スライダ位置を調整

■ スライダを手動で逆作動させ、2つのオーバートラベルセンサの間に配置してください。

警告
手動で逆作動させる場合は、速度は50mm/s以下としてください。
電源を切った状態であっても、上記速度以上で勢い良くスライダを逆作動させると回生電力によりコントローラ一体型ACサーボモータが起動しスライダが急にロックし、けがの原因になります。

7. ポジショニングアクチュエータへ電源を投入

磁極検出動作

- 電源投入直後から約3秒間、モータへ通電して磁極検出を行います。その際、いずれかの方向へ約3mm動作します。
- 正常に磁極検出が行われた場合はサーボオンし、ステータスLEDが青色で点灯します。その後、自動でオーバートラベルセンサを使用した原点復帰に移行します。

オーバートラベルセンサを使用した原点復帰

- スライダがOTL兼ORGセンサまで10mm/sの速度で移動します。
- ドッグがOTL兼ORGセンサを遮光すると減速停止します。その後、反モータ側へ超過補正を行い、連続的に更に15mm（原点オフセット、出荷時設定）移動します。この位置が原点となります。

8. 原点復帰の完了

■ サーボオンしたまま原点位置で停止します。
7.4.4 電源投入時の確認事項（ジョグ使用時）

指示 スイッチ等の外部機器からINPUT1およびINPUT2へジョグ信号を入力してジョグ
運転を行う場合は、入力ポートの機能割当てを変更する必要があります。
以下手順に従って設定を行ってください。

① 外部機器とポジショニングアクチュエータが正しく配線されているか確認
■ ジョグ前進およびジョグ後退の接点出力を、INPUT1およびINPUT2へ接続してください。

② 外部機器電源を投入

③ ポジショニングアクチュエータへの電源を投入
■ ジョグ接点出力の論理により、電源投入後の動作が異なります。
 ジョグ接点出力がハイアクティブの場合
 • 電源投入後から緊急停止と認識され、ステータスLEDの青色が連続点灯したまま赤
 色が6回点滅している状態(緊急停止状態)となります。
 ジョグ接点出力がローアクティブの場合
 • 電源投入後から約3秒間、モータへ通電して磁極検出を行います。その際、いずれか
 の方向へ約3mm動作します。
 • 正常に磁極検出が行われなかった場合は4〜5秒後にサーボオフし、ステータスLED
 が赤色で点灯します。この場合は電源を遮断し、お客様で設置される積載物を含め、カ
 プリングやねじ軸、スライダなどの可動部が機械的にロックされていないか確認して
 ください。
 • 正常に磁極検出が行われた場合はサーボオンし、ステータスLEDが青色で点灯します。
 その後、自動で原点復帰に移行します。

④ ターミナルソフトの設定と通信の確認
■ 「11.2 ターミナルソフトの設定」の「11.2.1通信ケーブルの配線」〜「11.2.4 ポジショニ
 ングアクチュエータとの通信の確認」に従いパーソナルコンピュータとポジショニングアク
 チュエータを接続し、正常に通信ができていることを確認してください。
⑤ 入力ポートの機能割当て変更

配線状態に応じたコマンドの入力
・ ジョグ接点出力の論理と接続する入力ポートにより、機能割当て変更に用いるコマンドが異なります。表7.9に示す組み合わせに応じたコマンドをターミナルソフトの画面に入力してください。

ジョグ運転速度の入力
・ ジョグ運転速度の工場出荷値は 0.2mm/s (K49=10) です。
・ ジョグ運転速度を変更する場合は、下記式に従い希望する移動速度に応じたパラメータK49を算出し、表7.9に示すコマンドをターミナルソフトの画面に入力してください。

\[
K49[\text{p/s}] = \frac{\text{移動速度}[\text{mm/s}] \times 10000[\text{p/r}]}{10 \times \text{リード}[\text{mm/r}]}
\]

<table>
<thead>
<tr>
<th>ハイアクティブ</th>
<th>入力ポート</th>
<th>コマンド</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT1にジョグ前進</td>
<td>K26=000000(改行)</td>
<td></td>
</tr>
<tr>
<td>INPUT2にジョグ後退</td>
<td>K27=000043(改行)</td>
<td></td>
</tr>
<tr>
<td>INPUT1にジョグ後退</td>
<td>K26=000000(改行)</td>
<td></td>
</tr>
<tr>
<td>INPUT2にジョグ前進</td>
<td>K27=000034(改行)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ローアクティブ</th>
<th>入力ポート</th>
<th>コマンド</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT1にジョグ前進</td>
<td>K26=000011(改行)</td>
<td></td>
</tr>
<tr>
<td>INPUT2にジョグ後退</td>
<td>K27=000034(改行)</td>
<td></td>
</tr>
<tr>
<td>INPUT1にジョグ後退</td>
<td>K26=000011(改行)</td>
<td></td>
</tr>
<tr>
<td>INPUT2にジョグ前進</td>
<td>K27=000034(改行)</td>
<td></td>
</tr>
</tbody>
</table>

| ジョグ運転速度 | K49=1〜32767(改行) |

変更確認
・ ターミナルソフトの画面に「K26=******(改行)」と入力すると、前章で入力した「K26=******」がコールバックされますので、間違いがないか確認してください。
・ ターミナルソフトの画面に「K27=******(改行)」と入力すると、前章で入力した「K27=******」がコールバックされますので、間違いがないか確認してください。
・ ターミナルソフトの画面に「K49=******(改行)」と入力すると、前章で入力した「K49=******」がコールバックされますので、間違いがないか確認してください。

⑥ 通信を切断
・ 「11.2 ターミナルソフトの設定」の「11.2.5 通信の切断」に従い、通信を切断します。

⑦ ポジショニングアクチュエータの電源を遮断
7.5 パーソナルコンピュータおよびソフトウェアの準備

■ ポジショニングアクチュエータを運転するにあたり、専用ソフトウェア「PA ターム」を用いてポジション指定やプログラム、各種設定を行う必要があります。パーソナルコンピュータの準備および PA タームのインストールをお願いします。
■ PA タームの詳細については、弊社ホームページの「サービス」→「ダウンロード」→「精機製品・取扱説明書ダウンロード」からダウンロードできる、「ポジショニングアクチュエータ 取扱説明書 (ソフトウェア編)」を参照してください。

注意

通信ケーブルの抜き差しは、ポジショニングアクチュエータおよびパーソナルコンピュータの電源を遮断してから行ってください。故障の原因となります。

7.5.1 PA ターム動作環境

① パーソナルコンピュータ

■ 下記②に示す OS の動作する PC/AT 互換機が必要です。
 ・ CPU Pentium III クラス、600 MHz 推奨：Pentium IV 1 GHz 以上
 ・ RAM 256M Bytes 推奨：512M Bytes 以上
 ・ HDD 100MBytes free space 推奨：1G Bytes free space 以上
 ・ モニタ 1024 X 768dots、256 色 推奨：High Color 16 ビット以上

② OS

■ 動作確認済みの OS は、Windows 2000 Professional、Windows XP、Windows Vista、Windows 7 です。
 32bit, 64bit 版どちらにも対応しております。プログラムのインストールやシステム設定変更が可能なアカウントでログインしてください。
■ Windows 2000 Professional および Windows XP 上にて PA タームを動作させるには、Microsoft .NET Framework のバージョン 2.0 が必要です。
■ 使用するパーソナルコンピュータの OS が Windows 2000 Professional または Windows XP の場合は、下記手順にて Microsoft .NET Framework を確認してください。
 ・ 「スタート」メニューから「プログラムのアクセスと既定の設定」を選択します。
 ・ 「プログラムの変更と削除(H)」を押します。
 ・ Microsoft.NET Framework 2.0 がインストールされていることを確認してください。
7. 運転準備

図 7.9 Microsoft .NET Framework の確認

■ Microsoft .NET Framework がインストールされていない場合は、お客様におけるパソコンおよびネットワーク管理者に相談して Microsoft .NET Framework 2.0 をインストールしてください。

- .NET Framework は、Microsoft 社の以下の URL からダウンロードできます。
- Windows 2000 Professional の場合は、.NET Framework Version 2.0 のパッケージをダウンロードし、インストールしてください。
- Windows XP の場合は、.NET Framework Version 2.0、3.0、3.5 のうちいずれかのパッケージをダウンロードし、インストールしてください。
 .NET Framework Version 3.0 および 3.5 には、Version 2.0 が内包されています。
 なお、.NET Framework Version 4.0 には Version 2.0 が内包されておりません。
 Version 4.0 のみをインストールしても PA タームは起動できませんので注意してください。

③ 通信ポート

■ RS-232C ポートまたは USB ポートに空きがあること。
■ RS-232C ポートを有していないパソコンコンピュータであっても、USB－RS-232C 変換アダプタを使用することでポジショニングアクチュエータとの通信が可能です。
USB－RS-232C 変換アダプタを用いる場合は、USB－RS-232C 変換アダプタを USB ポートに接続します。ドライバのインストールを要求された場合は、USB－RS-232C 変換アダプタの取扱説明書に従いインストールします。
動作確認済みのアダプタは、「株式会社バッファローコクヨサプライ社製 USB シリアルケーブル SRC06USB」です。
7.5.2 PAタームのインストール

- 弊社ホームページの「サービス」→「ダウンロード」→「精機製品・アプリケーションソフトウェア」から、PA タームをダウンロードしてください。

 NSK ホームページ http://www.jp.nsk.com/

- 解凍したフォルダの中の「setup.exe」をダブルクリックしてください。

- インストーラの指示に従ってインストールを進めてください。

- インストールが完了すると、デスクトップに図 7.10 に示すショートカットアイコンが作成されます

 图 7.10 PA タームショートカットアイコン

- RS-232C ポート（COM ポート）の設定は PA タームにて自動で行いますので設定は不要です。
8. 運転

8.1 運転時の安全事項

警告
運転中は、お客様で設置される部分を含め、カップリングやねじ軸、スライダなどの可動部には触れないでください。けがの原因になります。

禁止
ポジショニングアクチュエータは電源投入後すぐにモータへの通電を開始し、自動的に原点復帰を行います。不慮のシステムダウンからの復旧時にはモータへの通電および原点復帰を開始します。お客様で設置される部分を含め、カップリングやねじ軸、スライダなどの可動部には触れないでください。けがの原因になります。

禁止
コントローラ一体型ACサーボモータのモータ部およびコントローラ部は発熱して高温となります。運転中や電源遮断直後は、モータ部およびコントローラ部には触れないでください。火傷の原因になります。

注意
禁止
原点復帰方法（押当てもしくは原点センサ）にかかわらず、原点復帰の方向や速度、加速度、押当てトルクを変更しないでください。破損の原因になります。

指示
「8.2 ポジション運転」にてポジショニングアクチュエータを用いる場合は、簡易プログラム運転のステップ設定はすべて空欄にしてください。誤ってポジション指示入力0〜2がすべてオフの状態で運転開始入力をオンとした場合、ステップ設定に従った簡易プログラム運転が行われます。

指示
原点復帰が正常に行われたことを確認してから運転開始入力を操作してください。原点復帰が途中で停止し、電源の再投入が必要となります。
シーケンサなどの上位機器から運転開始する場合は、出荷時にOUTPUT3に設定されている「インポジション出力」、もしくは任意の出力に割り当てた「原点復帰完了」を上位機器から監視し、原点復帰が完了してレベルが変化するまでの間は運転開始しないように上位機器を設定してください。
8. 運転

表8.1に示す負荷質量および負荷重心位置の範囲内で使用してください。ピッチングモーメントが過大となり、破損や寿命低下の原因になります。

負荷重心位置とモーメント荷重の定義は図8.1を参照してください。
なお、ヨーイング・ローリングモーメントが生じる負荷の場合は、「12.1寿命計算」を参照してモーメント荷重を確認してください。

表8.1 ポジショニングアクチュエータ 可搬質量および負荷重心位置一覧

<table>
<thead>
<tr>
<th>適合シリーズ</th>
<th>呼び番号</th>
<th>可搬質量</th>
<th>負荷重心位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>軽負荷位置決め用</td>
<td>XY-HS0030-M05</td>
<td>7.5kg</td>
<td>スライダ中心上面から40mm</td>
</tr>
<tr>
<td></td>
<td>XY-HS0040-M05</td>
<td>7.5kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0050-M05</td>
<td>7.5kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0060-M05</td>
<td>7.0kg</td>
<td></td>
</tr>
<tr>
<td>中負荷位置決め用</td>
<td>XY-HS0030-M08</td>
<td>15.0kg</td>
<td>スライダ中心上面から60mm</td>
</tr>
<tr>
<td></td>
<td>XY-HS0040-M08</td>
<td>14.5kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0050-M08</td>
<td>14.5kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0060-M08</td>
<td>14.0kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0070-M08</td>
<td>13.5kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY-HS0080-M08</td>
<td>13.5kg</td>
<td></td>
</tr>
<tr>
<td>重負荷位置決め用</td>
<td>XY-HS0090-M10</td>
<td>20kg</td>
<td>スライダ中心上面から70mm</td>
</tr>
<tr>
<td></td>
<td>XY-HS0100-M10</td>
<td>19kg</td>
<td></td>
</tr>
</tbody>
</table>

図8.1 負荷重心位置とモーメント荷重
8. 運転

8.2 ポジション運転

PA タームにて位置リストを設定いただき、お客様のシーケンサなどの上位機器から 3 ポートの信号およびスタート信号の全 4 信号を入力いただくことで、最大 7 ポジションへの位置決め運転ができます。 （3点全入力“オフ”は、「簡易プログラム運転」の起動に割り当てられます）

PA タームの詳細については、弊社ホームページの「サービス」→「ダウンロード」→「精機製品・取扱説明書ダウンロード」からダウンロードできる、「ポジショニングアクチュエータ 取扱説明書（ソフトウェア編）」を参照してください。

NSK ホームページ http://www.jp.nsk.com/

8.2.1 通信ケーブルの配線

ポジショニングアクチュエータのホスト通信コネクタと、パーソナルコンピュータの RS-232C ポートまたは USB－RS-232C 変換アダプタを、通信ケーブルで接続します。

！指示 パーソナルコンピュータおよびポジショニングアクチュエータの電源が遮断された状態で接続してください。

8.2.2 電源投入

パーソナルコンピュータへ電源を投入し、Windows を起動します。

ポジショニングアクチュエータにはまだ電源を投入しないでください。

USB－RS-232C 変換アダプタを用いる場合は、USB－RS-232C 変換アダプタを USB ポートに接続します。ドライバのインストールを要求された場合は、USB－RS-232C 変換アダプタの取扱説明書に従いインストールします。

外部機器や上位機器へ電源を投入します。

ポジショニングアクチュエータへ電源を投入します。

自動的に原点復帰を行います。

具体的な原点復帰の動作は、「7.4.2 電源投入時の確認事項（出荷時設定）」もしくは「7.4.3 電源投入時の確認事項（オーバトラベルセンサ使用時）」を参照してください。

！指示 I/O コネクタの INPUT1 は、出荷状態においては「緊急停止」（ローアクティブ）に設定されております。よって未配線状態では緊急停止状態となり原点復帰が行われません。また、この状態では PA タームを起動しても操作することができません。配線処理を行ってください。
8.2.3 PAタームの起動

■ PA タームのショートカットアイコンをダブルクリックします。
■ 図 8.2 に示す初期画面が表示されますので、「自動接続」ボタンを押してください。
ポジショニングアクチュエータが接続されている COM ポートが自動検出されます。
ポーレートやパリティなどの RS-232C 通信に関する諸設定も自動で行われます。

図 8.2 PA ターム起動時の初期画面

■ 正常に接続できた場合は初期画面に「接続 OK : COM…。」と表示されます。「通常画面へ」ボタンを押してください。

図 8.3 正常接続時

![警告] エラーメッセージが表示される場合は「通常画面へ」の移行ができません。
「11.5.2 初期画面にてポジショニングアクチュエータと接続できない」を参照してください。
8.2.4 呼び番号確認

■ 前項において正常に接続が完了し、「通常画面へ」ボタンが押されると、図8.4に示す通常画面が表示されます。

図8.4 通常画面

■ 機械情報の表示

メニューから「表示(D)」→「機械情報を表示する(I)」を選択してください。

図8.5に示す機械情報ダイアログボックスが表示されます。

■ 呼び番号確認

表示された呼び番号と接続しているポジショニングアクチュエータの呼び番号が一致していることを確認し、「OK」ボタンを押してください。

図8.5 機械情報ダイアログボックス
8.2.5 位置リストの設定（直接数値入力）

図 8.6 に示す通常画面の「位置リスト」枠内に位置および速度、加速度を直接数値入力すると、位置リストをポジショニングアクチュエータへ記憶させます。

メニューバー

図 8.6 位置リスト設定時（直接数値入力）の操作項目

① PAタームを操作可能状態にする

「操作を許可する」のチェックを入れ操作可能状態にします。
「原点復帰運転」、「サーボオフ」ボタンと、メニューバーの「設定(S)」が有効となります。

② 位置リストを作成する

希望する位置番号へ、位置、速度、加速度を直接数値入力します。
入力した数値は、ポジショニングアクチュエータの Flash ROM へ随時書き込まれます。
位置番号と位置指定入力ポートの論理の関係を表 8.2 に示します。

<table>
<thead>
<tr>
<th>位置指定入力ポート</th>
<th>簡易プログラム運転</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ポジション指示 0 入力(INPUT4)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ポジション指示 1 入力(INPUT5)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>●</td>
<td>-</td>
<td>●</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ポジション指示 2 入力(INPUT6)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

● : オン - : オフ
8. 運転

■ 位置

・「位置番号」枠内の「位置(mm)」欄に、原点位置を基準とした位置をmm単位で数値入力します。最大7点まで指定できます。
・最小設定単位は0.002mm（2μm）です。
・最小値および最大値はソフトリミットの設定値によって異なります。
・ソフトリミットの設定値は、PAタームのメニューバーから、「設定(S)」→「パラメータ設定(P)」→「パラメータ設定ウィンドウ」→「その他の設定」タブを選択し、「K58 ソフトリミット反モータ側」および「K59 ソフトリミットモータ側」を確認してください。

■ 速度

・「位置番号」枠内の「速度(mm/s)」欄に、速度をmm/sの単位で数値入力します。
・最小値および最小設定単位は0.1mm/sです。
・最大値はポジショニングアクチュエータの呼び番号によって異なります。「6. 仕様」に記載の最高速度を確認してください。

■ 加速度

・「位置番号」枠内の「加速度(mm/s²)」欄に、加速度をmm/s²の単位で数値入力します。
・最小値および最小設定単位は2mm/s²です。
・最大値は9800mm/s²です。
③ 位置リストの保存および読み込み

作成した位置リストは、CSV ファイル形式にて保存および読み込みができます。

- 位置リストを保存する
 必要に応じ、メニューバーから「ファイル(F)」→「位置リスト保存(S)」を選択することで、任意の場所に位置リストファイルを保存できます。

- 位置リストを開く
 メニューバーから「ファイル(F)」→「位置リストを開く(O)」を選択することで、保存した位置リストファイルを読み込むことができます。

④ 「モーション計算機」の活用

- 動作条件を入力することで、移動時間や距離、最高速度、加速度の計算が可能です。位置リスト作成の際に活用してください。
- PA タームのメニューバーから「ツール(T)」→「モーション計算機(M)」を選択すると、図 8.8～図 8.11 に示すウィンドウが表示されます。
 「計算項目選択」から算出したいパラメータを選択し、「データ入力」に 3 種のパラメータを入力して「計算」ボタンを押すことで、計算結果が表示されます。
- 本ウィンドウを閉じる際は、右上のクローズボタン（×）を押してください。

要注意
モーション計算機のグラフ表示は固定された図です。
三角駆動（最高速度で運転する区間が無い条件）のデータを入力しても、グラフ表示は台形駆動のままでですので注意してください。

図 8.8 モーション計算機 計算例（移動距離、最高速度、加速度から移動時間を計算）
図 8.9 モーション計算例 (移動時間，最高速度，加速度から移動距離を計算)

図 8.10 モーション計算例 (移動時間，移動距離，加速度から最高速度を計算)

図 8.11 モーション計算例 (移動時間，移動距離，最高速度から加速度を計算)
8.2.6 位置リストの設定（ティーチング）

- 現物合わせで位置を設定したい場合は、希望する位置へジョグやインチングにてスライダを移動させ、位置番号に取り込むことができます。

位置取り込みボタン
詳細操作表示チェックボックス

図8.12 位置リスト設定時（ティーチング）の操作項目

① 詳細操作画面の表示
- 「詳細操作を表示する」にチェックを入れることで、図8.12に示す詳細操作画面が表示されます。

② 手動操作
- 「ジョグ/インチング」枠内を操作し、希望する位置へスライダを移動します。
 - 「ジョグ」にチェックを入れることで、「前進」(反モータ側)、「後退」(モータ側)を押している間に、押しているボタンの方向へスライダが移動します。
 移動速度は「ジョグ/インチング」枠内の「速度 (mm/s)」欄にて変更できます。
 - 「インチング」にチェックを入れることで、「前進」(反モータ側)、「後退」(モータ側)を押す毎に、押したボタンの方向へスライダが移動します。
 移動量は「ジョグ/インチング」枠内の「移動量 (mm)」欄にて変更できます。
 移動速度の設定は上記ジョグ運転を参照してください。
 - 現在位置は、「状態」枠内の「現在位置」にて確認できます。
3. ティーチング
■ 希望する位置へスライダが移動したら、希望する位置番号に応じた「位置取込み」ボタンを押してください。現在位置が「位置(mm)」欄に取り込まれます。
■ 最小分解能は0.002mmです。

4. 位置リストの作成
■ 「8.2.4 位置リストの設定（直接数値入力）」と同様に、速度および加速度を直接数値入力します。

5. 位置リストの保存および読み込み
■ 「8.2.4 位置リストの設定（直接数値入力）」と同様に、作成した位置リストはCSVファイル形式にて保存および読み込みができます。
8.2.7 PAタームによる動作確認

■ PA タームの疑似入力機能を用いることで、シークエンスなどの上位機器が接続されていない状態であっても、位置番号とポジション指示入力 0～2 の関係を確認できます。

① 移動位置の確認

■ 位置番号に応じた「移動」ボタンを押すことで、その位置番号に書き込まれた位置エスライダが移動します。

② 位置番号と位置指定入力ポートの確認

■ 「疑似入力」ボタンと INPUT1～6 の対応は、図 8.13 に示す設定がされております。
■ 「疑似入力」の No.4～No.6 ボタン（ポジション指示入力 0～2 に対応）のレベルを操作し、No.3 ボタンのレベルを変化（オフ→オン）することで、100ms 後にその位置番号に書き込まれた位置エスライダが移動します。
■ 位置番号とポジション指示入力 0～2 の関係は、「表 8.2」を参照してください。
■ 「疑似入力」の No.1 および No.2 ボタン（INPUT1 および 2 に対応）は無効です。実際の入力ポートが優先されております。

■ (緑): オン ■ (グレー): オフ

| INPUT6: ポジション指示 2 入力 |
| INPUT5: ポジション指示 1 入力 |
| INPUT4: ポジション指示 0 入力 |
| INPUT3: 運転開始入力（エッジ検出） |
| INPUT2: 無効 (実際の入力ポートが優先) |
| INPUT1: 無効 (実際の入力ポートが優先) |

図 8.13 「疑似入力」ボタンと INPUT1～6 の対応

■ 運転中に運転開始入力のレベルを変化（オン→オフ）した場合は、100ms 後から減速し運転を一時停止します。
■ 再度運転開始入力のレベルを変化（オフ→オン）した場合は、その時点でポジション指示のレベル状態に関わらず、運転開始入力時に指定していた位置番号への運転を再開します。
8.2.8 上位機器への接続

- お客様のシーケンサなど、上位機器への接続する際のピン配列や電気仕様は、「6.4.2 I/O コネクタ」を参照してください。
- 配線例は「7.3.3 I/O コネクタ配線」を参照してください。

8.2.9 上位機器を用いた運転

- 実際の入力ポートを有効にするには、PA タームの「操作を許可する」のチェックを外して操作不可状態にするか、PA タームを終了してください。
- 運転開始入力のレベルを変化（オフ→オン）させることにより、ポジション指示 0~2 入力にて指定した位置番号へスライダが移動します。

実動作

運転開始入力（INPUT3）
OFF
ON

ポジション指示 0～2 入力（INPUT4～6）
OFF
ON

原点復帰完了（出荷時未割当て）
OFF
ON

インポジション出力（OUTPUT3）
OFF
ON

2ms以上
100ms
P* 運転中

「インポジション」または「原点復帰完了」検出後

図 8.14 ポジション運転時のタイミングチャート
① 原点復帰

指針 原点復帰が正常に行われたことを確認してから運転開始入力を操作してください。原点復帰が途中で停止し、電源の再投入が必要となります。

■ シーケンサなどの上位機器から運転開始入力を操作する場合は、出荷時に OUTPUT3 に設定されている「インポジション」もしくは、任意の出力に割り当てた「4 原点復帰完了」を上位機器から監視し、原点復帰が完了してレベルが変化するまでの間は運転開始しないように上位機器を設定してください。

■「原点復帰完了」を出力ポートに割り当てるには、PA タームのメニューから、「設定(S)」→「パラメータ設定(P)」→「パラメータ設定ウィンドウ」→「入出力設定」タブを選択し、変更したい出力 1〜4 の「K34 OUTPUT□の機能」から、「4 原点復帰完了」を選択します。

図 8.15 パラメータ設定ウィンドウ（入出力設定）

② 運転開始

運転を開始する際は、ポジション指示 0〜2 入力（INPUT4〜6）のレベルを確定してから 2ms 以上後に運転開始入力のレベルを変化（オフ→オン）してください。

その時点のポジション指示 0〜2 入力に応じた位置番号へ 100ms 後に運転を開始します。
③ 運転中
運転中は運転開始入力をオン状態に保ってください。
運転中に運転開始入力のレベルを変化（オン→オフ）した場合は、100ms 後から減速し運転を一時停止します。
再度運転開始入力のレベルを変化（オフ→オン）した場合は、その時点でのポジション指示0〜2 入力（INPUT4〜6）の状態に関わらず、運転開始時に指定していた位置番号への運転を再開します。

④ 運転完了
インポジション幅内（出荷時設定±0.05mm）に位置決めが完了すると、インポジション出力（OUTPUT3）を出力します。インポジション出力を検出した後に運転開始入力のレベルを変化（オン→オフ）してください。
8.3 簡易プログラム運転

■ PA タームにてプログラムステップセルに機能を設定することで、最大 40 ステップまでのプログラム運転ができます。
■ 以下の 4 つの機能をプログラムできます。
 - 位置番号
 - 出力ポートのレベル変更（最大 4 ポート）
 - 入力ポートのレベル変更待ち（最大 2 ポート）
 - タイマー（最大 8 種類）
■ パーソナルコンピュータやシーケンサといった上位機器を常設することなく、ポジショニングアクチュエータを核としたプログラム運転が可能です。

8.3.1 パーソナルコンピュータとの結線～位置リストの設定

■ 位置リストの設定方法は「8.2 ポジション運転」と同じ手順にて行います。
「8.2.1 通信ケーブルの結線」～「8.2.6 位置リストの設定（ティーチング入力）」を参照してください。

8.3.2 プログラムステップセルの設定

■ 図 8.7 に示す詳細操作画面において、「簡易プログラム設定」枠中の「ステップ 1」～「ステップ 40」ボタンをクリックすると、図 8.16 に示すダイアログボックスが表示されます。
■ 各設定項目を運転したい順番にステップ 1 から設定していきます。
空欄ステップにてサイクル終了とします。
■ 入力した項目はポジショニングアクチュエータの Flash ROM へ随時書き込まれます。

![簡易プログラム設定ダイアログボックス](image)

図 8.16 簡易プログラム設定ダイアログボックス
プログラムステップセルの設定項目を以下に示します。

① 位置
■ そのステップにて位置決めさせたい位置番号に対応した番号（P1～P7）を選択します。

② 出力
■ そのステップにて変化させたい出力ポートとレベルを選択することで、ポジショニングアクチュエータから周辺機器を駆動する際に用います。
■ OUTPUT1～4 に対応した番号（ON1～ON4、OFF1～OFF4）を選択します。
 - 「汎用」以外の機能が割り付けられている出力ポートは、グレーアウトされ操作できません。出荷時のパラメータ設定では「汎用出力」以外の設定となっているため操作ができません。
 - 出力ポートの機能を「汎用出力」に変更するには、メニューから「設定(S)」→「パラメータ設定(P)」→「パラメータ設定ウィンドウ」→「入出力設定」タブを選択し、変更したい出力1～4 の「K34 OUTPUT□の機能」から、「3 泛用出力」を選択します。

③ 入力
■ ステップ間の入力待ちを行う場合に用います。
■ INPUT1 および2 に対応した番号（IN1, IN2）を選択します。
 - 「汎用入力」以外の機能が割り付けられている入力ポートは、グレーアウトされ操作できません。出荷時のパラメータ設定では「汎用入力」以外の設定となっていて操作ができません。
 - 入力ポートの機能を「汎用入力」に変更するには、メニューから「設定(S)」→「パラメータ設定(P)」→「パラメータ設定ウィンドウ」→「入出力設定」タブを選択し、変更したい入力1～2 の「K27 INPUT□のレベル機能」から、「1 汎用入力」を選択します。
 - 入力ポートの論理を変更するには、メニューから「設定(S)」→「パラメータ設定(P)」→「パラメータ設定ウィンドウ」→「入出力設定」タブを選択し、変更したい入力1～2 の「K26 INPUT□の論理」から、「0 ハイアクティブ」または「1 ローメイアクティブ」を選択します。

④ タイマー
■ そのステップにて休止させたい時間を選択します。
■ 「タイマー設定値」枠中の T1～T7 に対応した番号（T1～T7）を選択します。
■ タイマー設定値は任意の休止時間を ms 単位で数値入力します。
■ 最小単位は 1ms、最大休止時間は 5000ms です。
8. 運転

⑤ 未使用

■ そのセルは実行せずに次のセルへ移行します。

⑥ 削除

■ そのセルを空欄ステップにします。

8.3.3 簡易プログラムに関する機能

■ プログラムステップセルの設定に関する機能を以下に示します。

① 繰り返し実行する

■ 「繰り返し実行する」にチェックを入れることで，空欄ステップからステップ 1 に戻り，簡易プログラム運転を繰り返し続けます。

② プログラムを保存する

■ 「簡易プログラム設定」枠中の「保存」ボタンを押すことで，任意の場所にプログラムファイルを保存できます。
■ CSVファイル形式にて保存されます。

③ プログラムを開く

■ 「簡易プログラム設定」枠中の「読込」ボタンを押すことで，保存したプログラムファイルを読み込むことができます。

④ プログラムを全消去

■ 「簡易プログラム設定」枠中の「クリア」ボタンを押すことで，ポジショニングアクチュエータの Flash ROM に書き込まれたプログラム内容を消去します。
8.3.4 PAタームによる動作確認

- PA タームのプログラム操作ボタンおよび疑似入力を用いることで、プログラムの確認ができます。

① プログラム操作ボタンによるプログラム確認
- 詳細操作画面のプログラム操作ボタンを図 8.17 に示します。プログラム実行ボタンを押すことで、ステップ 1 から空欄ステップまでの一連のステップを連続運転します。
 - 空欄ステップにて運転を停止します。
 - 「繰り返し実行する」にチェックを入れることで、繰り返し運転を続けます。
 - ステップに入力待ち（IN1, IN2）を設定した場合は、そのステップで停止する場合があります。「疑似入力」の No.1 および No.2 ボタン（INPUT1,2 に対応）を使用して入力待ちを解除してください。

② 疑似入力によるプログラム確認
- 図 8.8 に示す「疑似入力」の No.4～No.6 ボタン（ポジション指示入力 0～2 に対応）を全てオフとし、No.3 ボタン（INPUT3 に対応）のレベルを変化（オフ→オン）することで、100ms 後にステップ 1 から空欄ステップまでの一連のステップを連続運転します。
 - 空欄ステップにて運転を停止します。
 - 「繰り返し実行する」にチェックを入れることでプログラムを繰り返し続けます。
 - 運転中に No.3 ボタンをレベル変化（オン→オフ）した場合は、100ms 後から減速し運転を一時停止します。
 - 再度 No.3 ボタンをレベル変化（オフ→オン）した場合は、一時停止した時点からの運転を再開します。
 - ステップに出力（ON1～ON4, OFF1～OFF4）を設定した場合は、「状態表示」枠内の「制御出力状態」表示にて動作を確認できます。
 - ステップに入力待ち（IN1, IN2）を設定した場合は、「疑似入力」の No.1 および No.2 ボタン（INPUT1,2 に対応）を使用することにより、入力待ち解除の条件を確認できます。

8.3.5 周辺機器への接続
- お客様のスイッチボックスなど、周辺機器への接続する際のピン配置や電気仕様は、「6.4.2 I/O コネクタ」を参照してください。配線例は「7.3.3 I/O コネクタ配線」を参照してください。
8.3.6 周辺機器を用いたプログラム運転

実際の入力回路を有効にするには、PA タームの「操作を許可する」のチェックを外して操作不可状態にするか、PA タームを終了してください。

プログラムの例を図 8.18 に示します。このプログラム例にて運転した場合のタイミングチャートを図 8.19 および図 8.20 に示します。

実動作

図 8.18 プログラム例

図 8.19 簡易プログラム運転 原点復帰時の運転開始タイミングチャート
運転開始入力（INPUT3）
OFF ON

ポジション指示 0〜2入力（INPUT4〜6）
OFF ON

入力待ち解除（INPUT2）
OFF ON

汎用出力1（OUTPUT1）
OFF ON

汎用出力2（OUTPUT2）
OFF ON

インポジション出力（OUTPUT3）
OFF ON

実動作

P3運転中

最長10ms 10ms

T1

最長10ms

P4運転中

最短10ms 10ms 10ms

P1運転中

2ms以上

図8.20 簡易プログラム運転 入出力ポートタイミングチャート
8. 運転

① 原点復帰
指示 原点復帰が正常に行われたことを確認してから運転開始入力を操作してください。原点復帰が途中で停止し、電源の再投入が必要となります。
シーケンサなどの上位機器から運転開始する場合は、出荷時にOUTPUT3に設定されている「インポジション出力」、もしくは任意の出力を割り当てた「原点復帰完了を」上位機器から監視し、原点復帰が完了してレベルが変化するまでの間は運転開始しないよう上位機器を設定してください。
「原点復帰完了」を出力ポートに割り当てるには、「8.2.9 上位機器を用いた運転」を参照してください。

② 運転開始
運転を開始する際は、ポジション指示0〜2入力をオフした状態にて運転開始入力（INPUT3）をレベル変化（オフ→オン）してください。ステップ1から空欄ステップまでの一連のステップを連続運転します。
簡易プログラムにて、次のセル命令が実行される遅れは最大10msです。
「繰り返し実行する」にチェックが入ってあった場合は、繰り返し運転を続けます。

③ 運転中
運転中は運転開始入力をオン状態に保ってください。

④ 一時停止
運転中に運転開始入力のレベルを変化（オン→オフ）した場合は、100ms後から減速し運転を一時停止します。
再度運転開始入力のレベルを変化（オフ→オン）した場合は、その時点でのポジション指示の状態に関わらず、運転開始時に指定していたステップの運転を再開します。

⑤ 運転完了
ステップに入力待ち（IN1, IN2）を設定して運転を一時停止した状態、もしくは運転開始入力をレベル変化（オン→オフ）して運転を一時停止にした状態にて、ポジションングアクチュエータの電源を遮断してください。
8.4 負荷質量と移動距離に対する位置決め時間と必要停止時間

ポジショニングアクチュエータを選定していただくにあたり、モータの定格トルクを超えないようにサイクルタイム（位置決め時間+停止時間）を設定する必要があります。
本章に記載のグラフを用いることで、搭載物の質量と移動距離から、ポジショニングアクチュエータ各呼び番号における「位置決め時間」と「必要停止時間」を求めることができます。
お客様の運転パターンが位置決め時間と必要停止時間を満たしていれば、連続運転することが可能です。

例として、質量14kgの搭載物を1秒以内に500mm移動させ、停止時間2秒で繰り返し運転させたい場合の算出例を以下に示します。

・ストローク500mm、可搬質量14.5kgである、中負荷位置決め用「XY-HS0050-M08」を選定します。

・中負荷位置決め用シリーズのセレクショングラフから、質量14kgの搭載物を500mm移動させる際の位置決め時間と、必要停止時間を求めます。

・位置決め時間は0.6秒、必要停止時間は1.4秒であるため、ご希望のパターンで連続運転することができます。

図8.21 中負荷位置決め用XY-HS0050-M08の負荷質量14kgフルストローク運転時の位置決め時間と必要停止時間

本章における選定方法は、最大加速度および最高速度の条件にて算出しています。
本章における選定方法にてご希望のサイクルタイムを満足できない場合であっても、条件によっては連続運転が可能な場合があります。

指示 運転中に過負荷アラーム（「10. ステータスおよびアラーム表示」を参照）が発生して運動が中断される場合は、停止時間を設けたり、加速度および速度を下げるなどして実効トルクを下げてください。
実効トルクの算出方法は、「12.2 実効トルク計算」を参照してください。
図8.22 軽負荷位置決め用 負荷質量と移動距離に対する位置決め時間と必要停止時間

図8.23 中負荷位置決め用 負荷質量と移動距離に対する位置決め時間と必要停止時間
図 8.24 重負荷位置決め用 負荷質量と移動距離に対する位置決め時間と必要停止時間
8.5 グラフ表示

- 実動作のグラフ表示が可能です。動作確認の際に活用してください。
- PA タームのメニューから「表示(D)」→「グラフを表示する(G)」を選択すると、図8.21に示すウィンドウが表示されます。
- 本ウィンドウを閉じる際は、右上のクローズボタン（×）を押してください。

指示
RS-232Cの通信速度およびX軸レンジの設定によってはグラフ表示が荒くなり、実際の動作と異なった表示となる場合があります。
特に USB-シリアル変換器を用いた場合、RS-232Cの通信レート（出荷時設定38400bps）の設定値よりも実際の通信レートが低い場合があり、実際の動作と異なった表示となる場合があります。
よって本機能によって測定した波形は、参考値として扱ってください。

![図8.21 グラフ表示例（速度1000mm/sおよび500mm/s、加速度9800mm/s²、700mm往復）](image)

位置表示

「位置描画」チェックボックスにチェックを入れて、「描画開始」ボタンを押すと、原点位置に対するスライダ位置の推移を赤線で描画します。
原点位置は縦軸の中央太線部です。
中央太線部に対して上側に描画されている場合は、反モータ側にスライダが位置しています。
中央太線部に対して下側に描画されている場合は、モータ側にスライダが位置していることを示します。
8. 運転

■ 速度表示
「速度描画」チェックボックスにチェックを入れて「描画開始」ボタンを押すと、スライダ速度の推移を緑線で描画します。
停止状態は縦軸の中央太線部です。
中央太線部に対して上側に描画されている場合は、反モータ側への移動速度を示します。
中央太線部に対して下側に描画されている場合は、モータ側への移動速度を示します。

■ x 軸レンジ
「×1」、「×2」、「×4」のチェックを入れ替えることで、横軸のレンジ（時間軸）を変更できます。横軸のレンジは、グラフ部に表示されている「時間：□□□ms/div」にて確認してください。

■ y 軸レンジ
「1/1」、「1/2」、「1/10」、「1/20」のチェックを入れ替えることで、縦軸のレンジ（スライダ位置およびスライダ速度）を変更できます。縦軸のレンジは、グラフ部に表示されている「変位：□□□mm/div」および「速度：□□□mm/s/div」にて確認してください。

■ 描画開始
「描画開始」ボタンを押すことで、時間軸の始点から上書きする形で描画を開始します。

■ 描画停止
「描画停止」ボタンを押すことで、既に描画されたグラフ表示を維持したまま、描画を停止します。

■ グラフ保存
「グラフ保存」ボタンを押すことで、描画されたグラフ表示を jpg ファイル形式で任意の場所に保存できます。

指示 描画中であってもグラフ保存を行うことが可能ですが、タイミングによって意図したグラフ表示を保存できない場合があります。
「描画停止」を押してグラフ描画を停止させ、意図したグラフ表示であることを確認してからグラフ保存を行ってください。

■ クリア
「クリア」ボタンを押すことで、既に描画されたグラフ表示をクリアします。
9. 保守

9.1 保守に関する安全事項

警告

禁止 コントローラ一体型 AC サーボモータの分解、修理、改造は絶対に行わないでください。感電や故障の原因になります。

指示 電源遮断直後の内部回路は高圧で充電されています。点検は電源を遮断後、5 分以上放置してから行ってください。感電や故障の原因になります。

指示 アラーム発生時は原因を取除き、安全を確保してから再運転してください。けがや破損、故障の原因になります。

注意

禁止 カップリングとモータシャフト、およびカップリングとボールねじを固定しているボルトは緩めたり取り外したりしないでください。

また、コントローラ一体型 AC サーボモータを取り付けているボルトおよびモータブラケットを取り付けているボルトは緩めたり取り外したりしないでください。

原点復帰毎に原点位置が 0.4mm ずれてしまう可能性があります。

9.2 定期点検と点検項目

■ 日常的に以下の項目を点検してください。
 ・ 周囲や空気穴に塵、ほこり、異物がないか
 ・ 異常な振動や音や臭いがないか
 ・ ケーブルが損傷していないか
 ・ 機器の接続部に緩みやズレがないか
 ・ 主回路電圧は正常か

■ ポジショニングアクチュエータのガイド部、ボールねじ部、サポート軸受部には出荷時にグリースが封入されています。

ガイド部およびボールねじ部には、潤滑ユニット「NSK K1」が標準装備されています。

通常の運転で5年間または10000km以上の長期メンテナンスフリー化が可能となっていますが、より安全のため定期点検・給油することを推奨いたします。

表9.1 ガイド部およびボールねじ部の点検と給油

<table>
<thead>
<tr>
<th>点検項目</th>
<th>給油期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>汚れ、切粉などの異物の混入</td>
<td>1年、または3000kmの早い方の間隔</td>
</tr>
<tr>
<td>グリース銘柄: AS2</td>
<td></td>
</tr>
<tr>
<td>別売りで「NSK グリースユニット」を用意しております</td>
<td></td>
</tr>
</tbody>
</table>

■ ガイド部、ボールねじ部、サポート軸受部に関する、更に詳しい点検項目や給油方法については、弊社の「NSK 精機製品総合カタログ」を参照してください。

82/116
9. 保守

■ コントローラ一体型 AC サーボモータに関する、更に詳しい点検項目については、マッスル株式会社のホームページからダウンロードできる「クールマッスル 2 ユーザガイド」を参照してください。
■ ダウンロード方法などの詳細は、マッスル株式会社のホームページを参照してください。
 マッスル株式会社ホームページ http://www.musclecorp.com/

9.3 定期交換

■ 一般的なご使用の場合、定期的に交換しなければならない部品はありません。
■ コントローラ一体型 AC サーボモータの電解コンデンサ単体の交換はいたしておりません。
 ご購入元経由にて弊社へご返却いただき、コントローラ一体型 AC サーボモータの交換が必要です。
■ 電解コンデンサの寿命目安は約 5 年です。
■ EEPROM の書換え寿命の目安は約 10 万回です。（パラメータ設定で+1 回）

9.4 修理

■ ご購入元経由にて弊社へご返却いただいての修理をお願い申し上げます。
 この場合、弊社の製品のみご返却いただきますようお願い申し上げます。
■ お客様で取り付けられた部品、ケーブルなどは、万が一破損や紛失が起こった場合でも補償する事はできません。
■ コントローラ一体型 AC サーボモータの修理につきましては、新品への交換を前提に対応させて頂きます。
9.5 保証期間と保証範囲

9.5.1 保証期間

- 製品の納入日より起算して１ヶ年、または稼働2400時間（いずれか早い方）を保証期間とします。

9.5.2 保証の範囲

- 保証対象品は納入製品とします。
- 納入製品の保証期間中の故障に限り納入者は無償修理をいたします。
- 保証期間経過後の故障修理は有償とします。

9.5.3 免責事由

- 保証期間中でも下記事項に該当する場合は保証の対象外となります。
 - 納入者指定の取扱説明書によらない工事、操作による故障。
 - 需要者側の不適当な扱い、使用、改造、取扱い上の不注意による故障。
 - 故障の原因が納入者以外の事由による故障。
 - 納入者以外の改造または修理による故障。
 - その他、天災災害など（納入者の責に帰さざる場合）不可抗力による故障。
 - なお、ここでいう保証は納入品単体の保証を意味するもので納入品の故障により誘発される損害はご容赦願います。

9.5.4 サービスの範囲

- 納入品の価格には技術者派遣などのサービス費用は含みません。
- 前記無償保証期間中でも技術派遣による立ち上げや保守調整は有償にて対応させていただきます。
- サービスの費用については有料サービス規定に従った請求をさせていただきます。

9.5.5 生産中止のアナウンス、生産中止後の保守期間について

- 生産中止のアナウンスは1年前に致します。また、生産中止後の保守期間は5年間となります。
10. ステータスおよびアラーム表示

コントローラ一体型 AC サーボモータは、状態によりステータス LED（青色／赤色）が点灯または点滅します。
赤色で点滅している場合は、アラームが発生しております。アラームが発生する代表的な原因とその対策を表 10.1 に示します。

表 10.1 ステータス LED 状態一覧

<table>
<thead>
<tr>
<th>ステータス LED</th>
<th>状態</th>
<th>アラームが発生する代表的な原因とその対策</th>
</tr>
</thead>
<tbody>
<tr>
<td>青</td>
<td>点灯</td>
<td>サーボオン</td>
</tr>
<tr>
<td>赤</td>
<td>点滅1回</td>
<td>サーボオフ</td>
</tr>
<tr>
<td></td>
<td>位置偏差</td>
<td>オーバーフロー</td>
</tr>
<tr>
<td></td>
<td>位置偏差</td>
<td>オーバーフロー</td>
</tr>
<tr>
<td>点滅2回</td>
<td>過電圧</td>
<td></td>
</tr>
<tr>
<td>点滅3回</td>
<td>過負荷</td>
<td></td>
</tr>
<tr>
<td>点滅4回</td>
<td>ドライバ部</td>
<td></td>
</tr>
<tr>
<td>点滅5回</td>
<td>押し付け</td>
<td></td>
</tr>
<tr>
<td>点滅6回</td>
<td>緊急停止</td>
<td></td>
</tr>
</tbody>
</table>

・PA タームからサーボオフのコマンドが送信された。
・電源投入時にスライダがロックされている。
「11.3.2 電源投入後にサーボオンしない」を参照してください。

PA タームを起動し、メニューバーの「設定」→「パラメータ設定」→「その他の設定」を選択し、「K56 位置偏差しきい値」が不必要に小さい値に設定されていないか確認してください。

・可搬質量が仕様を超えている。
可搬質量は仕様値内で使用してください。
・位置偏差しきい値の設定が小さい。

「7.2.1 設置に関する安全事項」を参照してください。

・可搬質量が仕様を超え、過大な回生エネルギーが生じている。
可搬質量は仕様値内で使用してください。
・垂直軸（Z 軸）や傾斜軸で使用している。
垂直軸（Z 軸）や傾斜軸で使用しないでください。

・運転条件による定格トルクを超える。
運転条件によっては停止時間が必要となります。
必要な停止時間については、「8.4 連続運転時の停止時間について」および「12.2 実効トルク計算」を参照してください。

・緊急停止が指定された。（PA タームではサポートしていない機能です）
11. トラブルシュート

11.1 トラブルシュート時の安全事項

警告
ポジショニングアクチュエータに電源を投入している間は、お客様で設置される積載物を含め、カップリングやねじ軸、スライダなどの可動部には触れないでください。けがの原因になります。

禁止
配線変更時およびコンネクタの抜き差し時は、必ずポジショニングアクチュエータの電源を遮断してから外部機器や上位機器の電源を切断してください。誤作動によりけがや故障の原因になります。

注意
電源投入時は、フォトカプラ用DC電源やシーケンサなど、ポジショニングアクチュエータのI/Oコンネクタへ接続している外部機器や上位機器の電源を投入し、電圧レベルや初期シーケンスなどが確定した後にポジショニングアクチュエータの電源を投入してください。原点復帰が正常に行われないなどの誤動作の原因となります。

11.2 ターミナルソフトの設定

- トラブルの状態によっては、ターミナルソフトを用いてポジショニングアクチュエータの設定や状態確認を行う必要があります。
- RS-232C ポートを装備したパーソナルコンピュータ、またはUSB－RS-232C変換アダプタが動作するパーソナルコンピュータが必要です。
- 本章では、ターミナルソフトとして、Windows 2000 Professional およびWindows XPに付属する通信ソフトである「ハイパーターミナル」を使用する場合の設定方法を解説します。Windows VISTAおよびWindows 7にはターミナルソフトが付属しておりません。インターネットからダウンロード可能なバージョンのターミナルソフトが各社から提供されていますので、そちらの使用を検討してくださいようお願いします。

11.2.1 通信ケーブルの配線

- パーソナルコンピュータおよびポジショニングアクチュエータの電源が遮断されていることを確認します。
- ポジショニングアクチュエータのホスト通信コンネクタと、パーソナルコンピュータのRS-232CポートまたはUSB－RS-232C変換アダプタを、通信ケーブルで接続します。
11.2.2 COMポートの確認

- 先に外部機器や上位機器へ電源を投入してからパーソナルコンピュータへ電源を投入し、Windows を起動します。この時はポジショニングアクチュエータに電源を投入しないでください。
- USB－RS-232C 変換アダプタを用いる場合は、USB－RS-232C 変換アダプタを USB ポートに接続します。ドライバのインストールを要求された場合は、USB－RS-232C 変換アダプタの取扱説明書に従いインストールします。
- 「スタート」メニューから「コントロールパネル」を選択します。
- 「システム」をダブルクリックします。
- 「ハードウェア」タブをクリックします。
- 「デバイスマネージャ」をクリックします。
- 「ポート (COM と LPT1)」をクリックします。
- RS-232C または USB-232C 変換ケーブルが割り当てられている通信ポート (COM*) を確認しメモなどに残します。

11.2.3 ハイパーターミナルの設定

- Windows のスタートメニューから、「ハイパーターミナル」を選択します。
- 「接続の設定」ダイアログボックスが表示されますので適当な名前を入れ「OK」をクリックします。

図 11.1「接続の設定」ダイアログボックス
11. トラブルシュート

■ 接続方法を問われますので、前章でメモなどに残した RS-232C または USB-232C 変換ケーブルが割り当てられている通信ポート（下例では COM1）を選択し、「OK」をクリックします。

図11.2 「接続の設定」ダイアログボックス

■ 選択した COM ポートのプロパティを問われますので、以下の設定にして「OK」をクリックします。

表11.1 COM ポートの設定

<table>
<thead>
<tr>
<th>項目</th>
<th>設定</th>
</tr>
</thead>
<tbody>
<tr>
<td>ビット/秒</td>
<td>38400bps</td>
</tr>
<tr>
<td>データビット</td>
<td>8</td>
</tr>
<tr>
<td>パリティ</td>
<td>なし</td>
</tr>
<tr>
<td>ストップビット</td>
<td>1</td>
</tr>
<tr>
<td>フロー制御</td>
<td>なし</td>
</tr>
</tbody>
</table>

■ ハイパーターミナルのメニューから、「ファイル(F)」→「プロパティ」を選択します。
■ 「設定タブ」をクリックします。
■ 「ASCII 設定」ボタンを押し、「行末に改行文字を付ける」と「ローカルエコーする」にチェックを入れ、「OK」をクリックします。

図11.3 「ASCII 設定」ダイアログボックス
11.2.4 ポジショニングアクチュエータとの通信の確認

■ ポジショニングアクチュエータの電源を投入します。
■ ハイパーターミナルの画面に「?85」とキー入力し、改行キーを押します。
■ ポジショニングアクチュエータから「ID1：CM2・・・・・・・・・」とバージョンタイトルがコールバックされましたら、正常に通信ができています。

11.2.5 通信の切断

■ メニューバーの「通信」から、「切断(D)」を選択します。
■ メニューバーの「ファイル(F)」から、「ハイパーターミナルの終了(X)Alt+F4」を選択します。
■ 本章で設定した設定を保存する場合は任意の場所に保存してください。

11.2.6 電源の遮断

■ 先にポジショニングアクチュエータの電源を遮断します。
■ 続いてパーソナルコンピュータ、外部機器や上位機器の電源を遮断します。
11.3 電源投入時のトラブル

11.3.1 電源が入らない

- 電源を投入してもステータス LED が点灯せず、ポジショニングアクチュエータへ通電されていないと思われる場合は、図11.4に示すフローに従い原因を確認してください。
- 他のオペレータの方が、意図的にステータス LED を点灯しない設定（K64=1）としている可能性があります。その場合はパラメータを元の設定に戻してください。

![電源投入時にステータス LED が点灯しない時フロー](image)

図11.4 電源投入後にステータス LED が点灯しない場合の確認フロー
11.3.2 電源投入後にサーボオンしない

- 電源を投入してもステータス LED が青色で連続点灯せず、ポジショニングアクチュエータがサーボオンしない場合は、図 11.5 に示すフローに従い原因を確認してください。
- 他のオペレータの方が、意図的に電源投入後にサーボオンしない設定（K68=0）としている可能性があります。その場合はパラメータを元の設定に戻してください。

![フロー図]

図 11.5 電源投入後にサーボオンしない場合の確認フロー
11.3.3 電源投入後に原点復帰が行われない

■ ポジショニングアクチュエータは原点復帰を行わせるための入力ポートを有しておりません。よって電源投入後、自動で原点復帰を行います。

具体的には、電源投入して磁極検出が完了した後にモータ側へスライダが移動し、モータ側の限界ストロークエンドを検出（押し当て原点復帰時）、または OTL 兼 ORG を検出（オーバトラベルセンサ使用時）した後にオフセット位置まで戻る順序にて原点復帰を行います。

■ 電源を投入しても原点復帰が行われない場合は、図 11.6 に示すフローに従い原因を確認してください。

11.4.4～5 原点復帰が正常に行われない

電源投入後に原点復帰が行われない場合の確認フロー

・ I/O コネクタへの配線が遅れているか
・ IO コネクタへの配線が端子していないか
・ 外部回路が A 接点を出力する構成になっているか
・ フォトカプラ用の電源は供給されているか

図 11.6 電源投入後に原点復帰が行われない場合の確認フロー
11.3.4 原点復帰が正常に行われない（押し当て原点復帰時）

■押し当て原点復帰時に以下の現象が生じ、原点復帰が正常に行われない場合は、図 11.7 に示すフローに従って原因を確認してください。
 • 原点復帰の度に位置がずれてしまう
 • モータ側ストロークエンドへ到達する前に原点復帰が完了してしまう

■他のオペレータの方が、意図的に原点復帰の設定を変更している可能性があります。その場合はパラメータを元の設定に戻してください。

押し当て原点復帰が正常に行われない

原点復帰時の送り条件の確認
ポジショニングアクチュエータとパーソナルコンピュータを通信ケーブルで接続し、PA タームを起動して「設定」→「パラメータ設定」→「原点復帰設定」を表示。以下の設定から変更されていないか確認。

<table>
<thead>
<tr>
<th>XY-HS00□□□□□</th>
<th>XY-HS00□□□□□</th>
<th>XY-HS00□□□□□</th>
</tr>
</thead>
<tbody>
<tr>
<td>K42 10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>K43 100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>K47 85</td>
<td>70</td>
<td>25</td>
</tr>
</tbody>
</table>

変更されている？
変更されていない
押し当て原点復帰の方向や速度、加速度、押し当てトルクは変更しないでください。

上記設定値に戻してください。

原点オフセットの変更
「設定」→「パラメータ設定」→「原点復帰設定」を表示。K48 を「0」に変更。

電気角原点の確認
PA タームを終了し、ターミナルソフトを起動。「|」と入力し原点復帰を行なう。「Origin=***」と表示されるので、Origin の値を読む。

Origin 値は？
0～999 801～1000

カップリングやモータを取り外した可能性があります。
電気角原点の再調整が必要です。

カップリングが手で回せないほど回転が重い？

積載物を一旦撤去
原点オフセットを「15.0」に戻す。

カップリングが手で回せないほど回転が重い？

カップリングが手で回せないほど回転が重い？

積載物を一旦撤去
原点オフセットを「15.0」に戻す。

正常に原点復帰が行なわれるか確認してください。

図 11.7 原点復帰が正常に行われない場合の確認フロー
11.3.5 原点復帰が正常に行われない（オーバートラベルセンサ使用時）

■ オーバートラベルセンサを使用した原点復帰が正常に行われない場合は、再度「7.4.3 電源投入時の確認事項（オーバトラベルセンサ使用時）」に従い配線や電源投入順序、入力ポートの機能割当て状態を確認してください。
11.4 運転時のトラブル

11.4.1 ポジション運転ができない

① 移動指令に対する動作が不安定

■ インポジション幅の確認

・ ポジショニングアクチュエータはインポジション幅で設定された範囲内に位置決め完了されないと、次の指令を受け付けません。

・ PA タームを起動し、メニューの「設定(S)」→「パラメータ設定(P)」→「その他の設定」を選択し、「K55 インポジション幅」が不必要に小さい値に設定されていないか確認してください。

② 位置番号への移動指令を受け付けない

■ 位置リストの確認

・ PA タームを起動し、位置リストが書き込まれているか確認してください。位置リストが書き込まれていない場合は新たに書き込むか、保存した位置リストを読み込んでください。

■ PA タームによる動作確認

・ 位置リストが書き込まれている状態で、「8.2.6 PA タームによる動作確認」に従い動作確認を行ってください。

・ 動作するようであれば、I/O コネクタの配線や、外部機器および上位機器に問題があります。

■ 出荷状態に戻す

・ 位置リストが書き込まれている状態で、「8.2.6 PA タームによる動作確認」に従い操作しても動作しない場合は、プログラムバンクの記述内容が変更されてしまっている可能性があります。

・ メニューの「設定(S)」→「出荷状態に戻す(D)」を選択して出荷状態に戻し、再度動作を確認してください。

・ 位置リストも出荷状態に戻ってしまいますので、必要に応じ位置リストを PA タームから書き出して保存してください。
11.4.2 簡易プログラム運転ができない

①プログラムステップセルの移動指令（P*）に対する動作が不安定

■ インポジション幅の確認
 - ポジショニングアクチュエータはインポジション幅で設定された範囲内に位置決め完了されないと、次の指令を受け付けません。
 - PA タームを起動し、メニューバーの「設定（S）」→「パラメータ設定（P）」→「その他の設定」を選択し、「K55 インポジション幅」が不必要に小さい値に設定されていないか確認してください。

② 位置番号（P*）への移動指令を受け付けない

■ 位置リストおよびプログラムの確認
 - PA タームを起動し、位置リストおよびプログラムが書き込まれているか確認してください。位置リストおよびプログラムが書き込まれていない場合は新たに書き込むか、保存した位置リストを読み込んでください。

■ PA タームによる動作確認
 - 位置リストおよびプログラムが書き込まれている状態で、「8.3.3 PA タームによる動作確認」に従い動作確認を行ってください。
 - 動作するようであれば、I/O コネクタの配線や、外部機器および上位機器に問題があります。

■ 出荷状態に戻す
 - 位置リストおよびプログラムが書き込まれている状態で、「8.3.3 PA タームによる動作確認」に従い操作しても動作しない場合は、プログラムバンクの記述内容が変更されてしまっている可能性があります。
 - メニューバーの「設定（S）」→「出荷状態に戻す（D）」を選択して出荷状態に戻し、再度動作を確認してください。
 - 位置リストおよびプログラムも出荷状態に戻ってしまいそうなので、必要に応じ位置リストおよびプログラムを PA タームから書き出して保存してください。

③ 入出力ポート（IN*, ON*, OFF*）の指令が動作しない

■ PA タームによる動作確認
 - 位置リストおよびプログラムが書き込まれている状態で、「8.3.3 PA タームによる動作確認」に従い動作確認を行ってください。
 - 動作するようであれば、I/O コネクタの配線や、外部機器および上位機器に問題があります。
11. トラブルシュート

■ 出荷状態に戻す

 ・ 位置リストおよびプログラムが書き込まれている状態で、「8.3.3 PA タームによる動作確認」に従う操作をした後も動作しない場合は、プログラムバンクの記述内容が変更されていますか。変更されている可能性があります。

 ・ メニューバーの「設定(S) → 出荷状態に戻す(D)」を選択して出荷状態に戻し、再度動作を確認してください。

 ・ 位置リストおよびプログラムを出荷状態に戻す場合、必要な位置リストおよびプログラムを PA タームから書き出して保存してください。

11.4.3 音、振動、オーバーシュートが大きい

■ ポジショニングアクチュエータは「6.仕様」に記載した可搬質量内であれば、コントローラー体型 AC サーボモータの制御技術により、チューニングレスにてお使いいただけます。

■ 標記のような問題が発生した場合は、マッスル株式会社のホームページからダウンロードできるソフトウェア「COOL WORKS LITE」の機能の一つである、「応答性調整ウィンドウ」にてサーボ剛性を変更することにより、回避できる可能性があります。

■ 使用方法については、マッスル株式会社のホームページからダウンロードできる「COOL WORKS LITE 取扱説明書」の、「応答性調整ウィンドウの使い方（CM2 の場合）」を参照してください。

■ ダウンロード方法などの詳細は、マッスル株式会社のホームページを参照してください。マッスル株式会社ホームページ http://www.musclecorp.com/

注意

禁止 極端な調整・変更は行わないでください。動作が不安定になり暴走や破損の原因になります。

禁止 COOL WORKS LITE を用いることにより、コントローラー体型 AC サーボモータの全てのパラメータ変更および全ての機能を変更することが可能となります。応答性調整ウィンドウ以外の機能を用いないでください。不意にパラメータが変更された場合、暴走や破損の原因になります。

11.4.4 アラームが発生する

■ コントローラー体型 AC サーボモータのステータス LED が赤色で点滅している場合は、何らかの原因でアラームが発生しております。

■ アラームが発生する代表的な原因とその対策については、「10. ステータスおよびアラーム表示」を参照してください。
11.5 PAターム使用時のトラブル

11.5.1 PAタームが起動できない

Windows 2000 ProfessionalおよびWindows XPについては、Microsoft.NET Framework 2.0がインストールされていないとPAを起動できません。「7.5.1 PAターム動作環境」に従い、Microsoft.NET Framework 2.0がインストールされているか確認してください。

11.5.2 初期画面にてポジショニングアクチュエータと接続できない

PAターム起動後の初期画面にて「自動接続」ボタンを押した際に、エラーメッセージが表示され接続できない場合の原因を以下に示します。

①「ポジショニングアクチュエータと接続できませんでした。」と表示される場合

- RS-232C通信の通信速度が低下しているか、もしくは通信ができておりません。
- 数回「自動接続」ボタンを押しても同様のメッセージが表示される場合は、以下を確認してください。

 - パーソナルコンピュータにおいて、PAターム以外のタスクに多くの負荷がかかったりしていると通信エラーが生じる場合があります。他のタスクを終了させてください。
 - 通信ケーブルがホスト通信コネクタおよびRS-232Cコネクタへ確実に接続されていない可能性があります。接続を確認してください。
 - ホスト通信コネクタあるいは通信ケーブルが断線している可能性があります。ケーブルが破損していないか確認してください。
 - ポジショニングアクチュエータへ電源が供給されていない可能性があります。ステータスランプが点灯しているか確認してください。
 - USB-232C変換アダプタが動作していない可能性があります。 「11.2.2 COMポートの確認」に従いCOMポートを確認し、USB-232C変換ケーブルが割り当てられている通信ポートが存在するか確認してください。

USB-232C変換ケーブルがCOMポートに割り当てられていない場合は、適切なドライバがインストールされているか、破損していないか確認してください。
11. トラブルシュート

②「不適切なアクチュエータの為、正常に接続できません。」と表示される場合

- 弊社から出荷した製品ではありませんのでPAタームを使用できません。
- RS-232C通信の通信速度が低下した場合も、このメッセージが表示される場合があります。
 数回「自動接続」ボタンを押しても同様のメッセージが表示される場合は、「①ポジショニングアクチュエータと接続できません。」と表示される場合」と同様の確認を行ってください。

③「適切な機械情報ファイルが見つかりません。」と表示される場合

- ポジショニングアクチュエータの呼び番号にPAタームが対応しておりません。
 PAタームのバージョンアップが必要です。
 弊社ホームページから最新版をダウンロードしてインストールしてください。
- RS-232C通信の通信速度が低下した場合も、このメッセージが表示される場合があります。
 数回「自動接続」ボタンを押しても同様のメッセージが表示される場合は、「①ポジショニングアクチュエータと接続できません。」と表示される場合」と同様の確認を行ってください。

④「モータからのデータが正しく読めません。」と表示される場合

- 各種パラメータ、タイマー、位置リスト、簡易プログラム設定内容の読み出し中にRS-232C通信の通信速度が低下したか、もしくは通信ができておりません。
- 数回「自動接続」ボタンを押しても同様のメッセージが表示される場合は、「①ポジショニングアクチュエータと接続できません。」と表示される場合」と同様の確認を行ってください。

11.5.3 出荷状態に戻す際に通信エラーが発生する

- 出荷状態パラメータの書き込み中、もしくは書き込んだパラメータを再度読み出ししてチェックしている最中にRS-232C通信の通信速度が低下したか、もしくは通信ができておりません。
- 数回「出荷状態に戻す」を行っても同様のメッセージが表示される場合は、前章「①ポジショニングアクチュエータと接続できません。」と表示される場合」と同様の確認を行ってください。
11.5.4 「緊急停止が入力されました」と表示されPAタームが操作できない

- 誤動作を避ける目的で、緊急停止が入力されている間は緊急停止ダイアログボックスが表示され、PA タームを操作できません。
 緊急停止入力を解除し、緊急停止ダイアログボックスの「OK」ボタンを押してください。

- 未配線状態で PA タームを立ち上げた、外部機器および上位機器が故障したなど、緊急停止入力を解除できない状況の場合は、ポジショニングアクチュエータの電源を遮断してください。
 通信エラーダイアログボックスが表示されますので「OK」ボタンを押すと PA タームを操作できる状態となります。
12. 技術資料

12.1 寿命計算

12.1.1 目的

- 本章では、ポジショニングアクチュエータのガイド部、ボールねじ部、サポート軸受部の寿命の算出方法を示します。
- ヨーグイング方向モーメントおよびローリング方向モーメントが発生する負荷の場合は、モーメント荷重を確認する必要があります。
- 本章で示す各種計算方法はあくまでも近似的なものです。詳細な検討につきましては（特にガイド部の寿命が要求寿命を下回るような場合）、弊社にご相談ください。

12.1.2 定格荷重

- ポジショニングアクチュエータ各部の定格荷重を表12.1に示します。

<table>
<thead>
<tr>
<th>呼び番号</th>
<th>ボールねじ (Ca)</th>
<th>ガイド軸受 (C)</th>
<th>サポート軸受 (Ca)</th>
<th>走行距離 (La(km))</th>
<th>ボールねじ (C0a)</th>
<th>ガイド軸受 (C0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XY-HS00□□-M05</td>
<td>2260</td>
<td>9850</td>
<td>4400</td>
<td>20</td>
<td>3780</td>
<td>10900</td>
</tr>
<tr>
<td>XY-HS00□□-M08</td>
<td>4560</td>
<td>19400</td>
<td>7100</td>
<td>20</td>
<td>7750</td>
<td>22800</td>
</tr>
<tr>
<td>XY-HS00□□-M10</td>
<td>7060</td>
<td>26600</td>
<td>7600</td>
<td>20</td>
<td>12700</td>
<td>29400</td>
</tr>
</tbody>
</table>

12.1.3 可搬モーメント

- 負荷の重心位置によっては、加／減速時に大きなモーメント力がスライダに加わり、ガイド部の面圧が過大となり寿命が極度に低下する恐れがあります。
- 可搬モーメントが表12.2に示す値を越えないような負荷もしくは加速度としてください。
- 可搬モーメントは、単一方向のモーメントが連続で作用した場合、ガイド部の定格疲れ寿命が10000kmとなる値です。（荷重係数1.5の場合）
- 複合モーメントが作用する場合、この値以下でも寿命が低くなる場合がありますので、寿命計算が必要です。
12. 技術資料

MR：スライダに作用するローリング方向モーメント（N・m）
MP：スライダに作用するピッチング方向モーメント（N・m）
MY：スライダに作用するヨーイング方向モーメント（N・m）

図12.1 モーメント方向

表12.2 ポジショニングアクチュエータ 可搬モーメント

<table>
<thead>
<tr>
<th>呼び番号</th>
<th>負荷方向</th>
<th>可搬モーメント</th>
</tr>
</thead>
<tbody>
<tr>
<td>XY-HS00□□-M05</td>
<td>ピッチング・ヨーイング</td>
<td>10.2N・m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ローリング</td>
</tr>
<tr>
<td>XY-HS00□□-M08</td>
<td>ピッチング・ヨーイング</td>
<td>33.4N・m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ローリング</td>
</tr>
<tr>
<td>XY-HS00□□-M10</td>
<td>ピッチング・ヨーイング</td>
<td>49.4N・m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ローリング</td>
</tr>
</tbody>
</table>

12.1.4 ガイド部の寿命計算式

リニアガイド部に作用する等価荷重Feの算出
ポジショニングアクチュエータのガイド部に作用する荷重（図12.1を参照）を検討し、個々の荷重を式①に代入し、等価荷重Feを求めます。

\[Fe = Y_H \cdot F_H + Y_V \cdot F_V + Y_R \cdot \varepsilon_R \cdot M_R + Y_P \cdot \varepsilon_P \cdot M_P + Y_Y \cdot \varepsilon_Y \cdot M_Y \cdots \cdots \tag{1} \]

- FH：スライダに作用する水平方向荷重，N
- FV：スライダに作用する上下方向荷重，N
- MR：スライダに作用するローリング方向モーメント，N・m
- MP：スライダに作用するピッチング方向モーメント，N・m
- MY：スライダに作用するヨーイング方向モーメント，N・m
- εR：ローリング方向モーメントに対する動等価係数
- εP：ピッチング方向モーメントに対する動等価係数
- εY：ヨーイング方向モーメントに対する動等価係数

モーメント方向と各モーメント方向に対する動等価係数については、図12.1と表12.3を参照してください。

Y_H, Y_V, Y_R, Y_P, Y_Y : 1 または 0.5

動等価係数 Fe を求める式①において、F_H, F_V, ε_R・M_R, ε_P・M_P, ε_Y・M_Y のうち最大のものを 1，それ以外を 0.5 とします。
スライダにかかる平均荷重 F_m の算出
スライダにかかる荷重は加速時、等速時、減速時で M_p および M_y が変動するため、(2)式を用いて平均荷重 F_m を求めます。

$$F_m = \left(\frac{F_{e1}^3 L_1 + F_{e2}^3 L_2 + \cdots + F_{en}^3 L_n}{L} \right)^{1/3} \cdots (2)$$

L_1: 等価荷重 F_{e1} を受けて走行した距離
L_2: 等価荷重 F_{e2} を受けて走行した距離
\ldots \ldots \ldots \ldots \ldots \
L_n: 等価荷重 F_{en} を受けて走行した距離

F_m: 変動する荷重の平均荷重
L: 全走行距離

ガイド部寿命 L の算出
ガイド部の寿命は、(3)式により計算します。

$$L = L_a \times \left(\frac{C}{f_w \cdot F_m} \right)^3 \cdots (3)$$

L: リニアガイド部寿命、km
F_m: リニアガイド部に作用する平均荷重、N
C: リニアガイド部基本動定格荷重（表 12.1 参照）、N
L_a: 走行距離、（表 12.1 を参照）km
f_w: 荷重係数（表 12.4 を参照）

<table>
<thead>
<tr>
<th>呼び番号</th>
<th>動等価係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>XY-HS00□□-M05</td>
<td>52.6 81.3 81.3</td>
</tr>
<tr>
<td>XY-HS00□□-M08</td>
<td>32.5 48.8 48.8</td>
</tr>
<tr>
<td>XY-HS00(□□)-M10</td>
<td>27.8 45.2 45.2</td>
</tr>
</tbody>
</table>

表 12.4 荷重係数 f_w の値

<table>
<thead>
<tr>
<th>運転条件</th>
<th>荷重係数 f_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>衝撃の無い円滑な運転の時</td>
<td>1.2</td>
</tr>
<tr>
<td>普通の運転の時</td>
<td>1.5</td>
</tr>
<tr>
<td>衝撃・振動を伴う運転の時</td>
<td>2.0〜3.0</td>
</tr>
</tbody>
</table>
12.1.5 ボールねじ部およびサポート軸受部の寿命計算式

ボールねじ部およびサポート軸受部にかかる平均荷重 F_m の算出

軸方向にかかる荷重から平均荷重を求めます。平均荷重は式②を用いて計算してください。

ボールねじ部およびサポート軸受部寿命 L の算出

ボールねじ部およびサポート軸受部の寿命は、式④により計算します。

$$ L = L_a \times \left(\frac{C_a}{f_w \cdot F_m} \right)^3 \cdots ④ $$

L：ボールねじ部（サポート軸受部）寿命，km
F_m：ボールねじ部（サポート軸受部）に作用する平均荷重，N
C_a：ボールねじ部（サポート軸受部）基本動定格荷重（表12.1参照），N
La：走行距離（表12.1参照），km
f_w：荷重係数（表12.4参照）
12.1.6 寿命計算例

- 計算例として、ポジショニングアクチュエータ XY-HS0060-M08 を用いて、最大可搬質量をフルストロークで往復運転する場合の寿命を算出します。

- 条件
 ストローク : 600 mm
 最高速度 : 1000 mm/s
 搭載質量 : \(m = 14.2 \text{kg} \)
 重力加速度 : \(g = 9.8 \text{m/s}^2 \)
 姿勢 : 水平
 運転パターン : 図 12.2 を参照
 負荷重心位置 : 60mm (A 寸法は図 12.3 による)

![図 12.2 運転パターン](image)

- 可搬モーメントの確認
 - 加速時および減速時にスライダに作用するピッチング方向モーメントの算出
 \[M_P = 14.2 \times 9.8 \times (0.06 + 0.038) = 13.6 \text{N} \cdot \text{m} \]
 - 加速時および減速時にスライダに作用するヨーイング方向モーメントの算出
 \[M_Y = 0 \text{N} \cdot \text{m} \]
 - 加速時および減速時にスライダに作用するローリング方向モーメントの算出
 \[M_R = 0 \text{N} \cdot \text{m} \]

<table>
<thead>
<tr>
<th>呼び番号</th>
<th>A 寸法</th>
</tr>
</thead>
<tbody>
<tr>
<td>XY-HS00□□-M05</td>
<td>25mm</td>
</tr>
<tr>
<td>XY-HS00□□-M08</td>
<td>38mm</td>
</tr>
<tr>
<td>XY-HS00□□□-M10</td>
<td>42mm</td>
</tr>
</tbody>
</table>

図 12.3 負荷重心位置
■ ガイド部寿命の算出

・ ガイド部に作用する等価荷重 Fe の算出

等速時：Fe₁ = Yv • Fv
= Yv • m • g
= 1 × 14.2 × 9.8
= 139N

加速時：Fe₂ = Yv • Fv + Yp • ε • M_p
= 0.5 × 14.2 × 9.8 + 1 × 14.2 × 9.8 × 0.06 + 0.038
= 735N

減速時：Fe₃ = Yv • Fv + Yp • ε • M_p
= 0.5 × 10 × 9.8 + 1 × 14.2 × 10 × 9.8 × 0.06 + 0.038
= 735N

・ スライダにかかる平均荷重 Fm の算出

\[Fm = \left(\frac{Fe_1 L_1 + Fe_2 L_2 + \cdots + Fe_n L_n}{L} \right)^{1/3} \]

\[= \left(\frac{139^3 + 498^3 + 51 + 735^3 \times 51}{600} \right)^{1/3} \]

= 411N

・ ガイド部寿命 L の算出

\[L = L_a \times \left(\frac{C}{f_w \cdot Fm} \right)^3 \]

\[= 20 \times \left(\frac{19400}{1.2 \times 411} \right)^3 \]

= 1.2 × 10⁶ km

■ ボールねじ部寿命の算出

・ ボールねじ部に作用する等価荷重 Fe の算出

等速時：Fe₁ = μ • m • g
= 0.01 × 14.2 × 9.8
= 1.39 N

加速時：Fe₂ = m • a + Fe₁
= 14.2 × 9.8 + 1.39
= 141N

減速時：Fe₃ = m • a – Fe₁
= 10 × 9.8 – 1.39
= 138N
12. 技術資料

・ ボールねじ部にかかる平均荷重 \(F_m \) の算出

\[
F_m = \left(\frac{Fe_1^3 L_1 + Fe_2^3 L_2 + \cdots + Fe_n^3 L_n}{L} \right)^{1/3}
\]

\[
= \left(\frac{1.4^3 \times 498 + 141^3 \times 51 + 138^3 \times 51}{600} \right)^{1/3}
\]

= 77N

・ ボールねじ部寿命 \(L \) の算出

\[
L = L_a \times \left(\frac{Ca}{f_w \cdot F_m} \right)^3
\]

\[
= 20 \times \left(\frac{4560}{1.2 \times 77} \right)^3
\]

= 2.4 \times 10^6 km

■ サポート軸受部寿命の算出

・ サポート軸受部に作用する等価荷重 \(F_e \) の算出

ボールねじ部に作用する等価荷重 \(F_e \) と同じ

・ サポート軸受部にかかる平均荷重 \(F_m \) の算出

ボールねじ部にかかる平均荷重 \(F_m \) と同じ

・ サポート軸受部寿命 \(L \) の算出

\[
L = L_a \times \left(\frac{Ca}{f_w \cdot F_m} \right)^3
\]

\[
= 20 \times \left(\frac{7100}{1.2 \times 77} \right)^3
\]

= 9.0 \times 10^6 km

■ 結果

計算結果は百万 km を越えており、問題ないと判断できます。

<table>
<thead>
<tr>
<th>表 12.5</th>
<th>XY-HS0060-M08 寿命計算結果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ガイド部</td>
</tr>
<tr>
<td>寿命</td>
<td>1.2×10^6 km</td>
</tr>
</tbody>
</table>
12.2 実効トルク計算

12.2.1 目的

- 本章では、ポジショニングアクチュエータのコントローラ一体型ACサーボモータが発生する実効トルクの算出方法を示します。
- ポジショニングアクチュエータを連続的に運転するにあたり、コントローラ一体型ACサーボモータが発生する実効トルクが、仕様に定められた定格トルクを超えないように運転条件を設定する必要があります。
- 実効トルクが仕様に定められた定格トルクを超えた場合には、過負荷アラーム（「10. アラーム」を参照）が発生して運転が中断されます。

12.2.2 実効トルク計算

- 実効トルクT_{rms}の算出

運転パターンから、コントローラ一体型ACサーボモータに必要とされる実効トルクT_{rms}を求めます。

$$T_{rms} = \left(\frac{T_2^2 t_a + T_1^2 t_b + T_3^2 t_c}{t} \right)^{1/2}$$

- T_2: 加速時トルク
- T_1: 等速時トルク
- T_3: 減速時トルク
- t_a: 加速時間
- t_b: 等速時間
- t_c: 減速時間
- t: サイクル時間

図12.4 運転パターン

- 実効トルクと定格トルクの比較

実効トルクが、仕様に定められた定格トルクを超えていないか確認します。

$$T_M \cdot S > T_{rms}$$

- T_M: モータ定格トルク（表6.1〜6.3参照）
- S: 安全係数（0.7）

- 実効トルクが仕様に定められた定格トルクを超えてしまう場合は、停止時間（td）を長くするか、ポジショニングアクチュエータのサイズアップが必要です。
12.2.3 実効トルク計算例

- 計算例として、ポジショニングアクチュエータ XY-HS0050-M05 を用いて、5kg の負荷をフルストロークで往復運転する場合の実効トルクを算出します。

- 使用条件

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>条件</td>
<td>値</td>
</tr>
<tr>
<td>ストローク</td>
<td>500mm</td>
</tr>
<tr>
<td>最高速度</td>
<td>1000mm/s</td>
</tr>
<tr>
<td>搭載質量</td>
<td>m=5kg</td>
</tr>
<tr>
<td>重力加速度</td>
<td>g=9.8m/s²</td>
</tr>
<tr>
<td>姿勢</td>
<td>水平</td>
</tr>
<tr>
<td>運転パターン</td>
<td>図 12.5 を参照</td>
</tr>
</tbody>
</table>

- 等速時駆動トルク T_1 の算出

\[
T_1 = \mu \cdot m \cdot g \cdot \frac{l}{2 \cdot \pi \cdot \eta} + T_{pmax}
\]

\[
= \frac{0.01 \times 5 \times 9.8 \times 0.02}{2 \times \pi \times 0.9} + 0.079
\]

\[
= 0.081[N \cdot m]
\]

- 加速時駆動トルク T_2 の算出

\[
T_2 = T_1 + \left[J + m \left(\frac{l}{2\pi} \right)^2 \right] \dot{\omega}
\]

\[
= T_1 + \left[J + m \left(\frac{l}{2\pi} \right)^2 \right] \frac{2\pi \nu}{l_a l}
\]

\[
= 0.081 + \left[0.244 \times 10^{-4} + 5 \times \left(\frac{0.02}{2\pi} \right)^2 \right] \times \frac{2\pi \times 1}{0.102 \times 0.02}
\]

\[
= 0.312[N \cdot m]
\]
■ 減速時駆動トルク T_3 の算出

$$ T_3 = T_1 - \left[J + m \left(\frac{l}{2\pi} \right)^2 \right] \dot{\omega} $$

$$ = T_1 - \left[J + m \left(\frac{l}{2\pi} \right)^2 \right] \frac{2\pi v}{t_c l} $$

$$ = 0.081 - \left[0.244 \times 10^{-4} + 5 \times \left(\frac{0.02}{2\pi} \right)^2 \right] \times \frac{2\pi \times 1}{0.102 \times 0.02} $$

$$ = -0.150 \, \text{N} \cdot \text{m} $$

$\dot{\omega}$: モータの角加速度 (rad/s2)
ν : 最高速度 (m/s)
t_a : 加速時間 (s)
t_c : 減速時間 (s)
J : モータにかかる搭載質量以外のイナーシャ (kg\cdotm2)

表12.7 モーターにかかるイナーシャ (搭載質量以外、カップリング・モータ含む)

<table>
<thead>
<tr>
<th>適合シリーズ</th>
<th>ポジショニングアクチュエータ呼び番号</th>
<th>ストローケ</th>
<th>イナーシャ J (×10$^{-4}$kg\cdotm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XY-HS0030-M05</td>
<td>300mm</td>
<td>0.222</td>
<td></td>
</tr>
<tr>
<td>XY-HS0040-M05</td>
<td>400mm</td>
<td>0.233</td>
<td></td>
</tr>
<tr>
<td>XY-HS0050-M05</td>
<td>500mm</td>
<td>0.244</td>
<td></td>
</tr>
<tr>
<td>XY-HS0060-M05</td>
<td>600mm</td>
<td>0.255</td>
<td></td>
</tr>
<tr>
<td>XY-HS0030-M08</td>
<td>300mm</td>
<td>0.459</td>
<td></td>
</tr>
<tr>
<td>XY-HS0040-M08</td>
<td>400mm</td>
<td>0.489</td>
<td></td>
</tr>
<tr>
<td>XY-HS0050-M08</td>
<td>500mm</td>
<td>0.518</td>
<td></td>
</tr>
<tr>
<td>XY-HS0060-M08</td>
<td>600mm</td>
<td>0.548</td>
<td></td>
</tr>
<tr>
<td>XY-HS0070-M08</td>
<td>700mm</td>
<td>0.577</td>
<td></td>
</tr>
<tr>
<td>XY-HS0080-M08</td>
<td>800mm</td>
<td>0.606</td>
<td></td>
</tr>
<tr>
<td>XY-HS0090-M10</td>
<td>900mm</td>
<td>1.665</td>
<td></td>
</tr>
<tr>
<td>XY-HS00100-M10</td>
<td>1000mm</td>
<td>1.758</td>
<td></td>
</tr>
</tbody>
</table>

■ 実効トルク T_{rms} の算出

$$ T_{rms} = \frac{T_2^2 t_a + T_1^2 t_b + T_3^2 t_c}{t}^{1/2} $$

$$ = \left[\frac{0.081^2 \times 0.398 + 0.312^2 \times 0.102 + (-0.15)^2 \times 0.102}{1} \right]^{1/2} $$

$$ = 0.122 \, \text{N} \cdot \text{m} $$

110/116
実効トルクと定格トルクの比較

\[T_M \cdot S = 0.19 \times 0.7 \]

\[= 0.133 > 0.122 \]

実効トルクが、仕様に定められた定格トルクを超えていないので、問題ないと判断できます。
13. 出荷時設定一覧

- 本章では、PA タームで変更可能なパラメータの出荷時設定一覧を示します。
- INPUT1,2 および OUTPUT1,2,3,4 の機能の詳細は、「6.4.2 I/O コネクタ」を参照してください。

表 13.1 XY-HS00□□-M05 出荷時設定値

<table>
<thead>
<tr>
<th>項目</th>
<th>呼び番号</th>
<th>XY-HS00□□-M05 出荷時設定値</th>
<th>設定範囲</th>
<th>単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>K24</td>
<td>回転パルス出力</td>
<td>2.0</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>K26</td>
<td>INPUT1 の論理</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>K27</td>
<td>INPUT1 の機能</td>
<td>7</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>K27</td>
<td>INPUT2 の機能</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K33</td>
<td>OUTPUT1 の論理</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>K34</td>
<td>OUTPUT2 の論理</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>K34</td>
<td>OUTPUT3 の機能</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K34</td>
<td>OUTPUT4 の機能</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K46</td>
<td>原点復帰方式</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>K47</td>
<td>原点復帰方向</td>
<td>1</td>
<td>表示のみ</td>
<td>变更はできません</td>
</tr>
<tr>
<td>K48</td>
<td>原点復帰速度</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K49</td>
<td>原点復帰加速度</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K50</td>
<td>原点復帰速度</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K51</td>
<td>原点オフセット</td>
<td>15.0</td>
<td>-100</td>
<td>100</td>
</tr>
<tr>
<td>K52</td>
<td>インポジション幅</td>
<td>0.050</td>
<td>0.002</td>
<td>0.2</td>
</tr>
<tr>
<td>K53</td>
<td>位置偏差しきい値</td>
<td>10.0</td>
<td>0.2</td>
<td>100</td>
</tr>
<tr>
<td>K54</td>
<td>適合条件検出時間</td>
<td>3000</td>
<td>100</td>
<td>5000</td>
</tr>
<tr>
<td>K55</td>
<td>ソフトリミット反モータ側</td>
<td>□□= 03 : 300 □□= 04 : 400 □□= 05 : 500 □□= 06 : 600</td>
<td>0</td>
<td>-300</td>
</tr>
<tr>
<td>K56</td>
<td>ソフトリミットモータ側</td>
<td>□□= 03 : 0</td>
<td>0</td>
<td>-300</td>
</tr>
</tbody>
</table>

※1 0 を入力した場合、ソフトリミット反モータ側が無効となります。
※2 0 を入力した場合、ソフトリミットモータ側の表示上は 0 ですが、実際には 0.2mm まで移動します。その他の数値を入力した場合は、表示どおりのソフトリミットモータ側で停止します。
<table>
<thead>
<tr>
<th>項目</th>
<th>呼び番号</th>
<th>XY-HS0□□-M08出荷時設定値</th>
<th>設定範囲</th>
<th>機能/単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>K24 回転パルス出力</td>
<td>2.0</td>
<td>□□ = 03～07: 1</td>
<td>□□ = 08: 0.8</td>
<td>mm/パルス</td>
</tr>
<tr>
<td>K26 INPUT1の論理</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0: ハイアクティブ</td>
</tr>
<tr>
<td>INPUT2の論理</td>
<td>0</td>
<td></td>
<td></td>
<td>1: ローアクティブ</td>
</tr>
<tr>
<td>K27 INPUT1の機能</td>
<td>7</td>
<td>0</td>
<td>9</td>
<td>0: 機能無し</td>
</tr>
<tr>
<td>INPUT2の機能</td>
<td>0</td>
<td></td>
<td></td>
<td>1: 洪用入力</td>
</tr>
<tr>
<td>K33 OUTPUT1の論理</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0: ローアクティブ</td>
</tr>
<tr>
<td>OUTPUT2の論理</td>
<td>0</td>
<td></td>
<td></td>
<td>1: ハイアクティブ</td>
</tr>
<tr>
<td>OUTPUT3の論理</td>
<td>0</td>
<td></td>
<td></td>
<td>0: 機能無し</td>
</tr>
<tr>
<td>OUTPUT4の論理</td>
<td>0</td>
<td></td>
<td></td>
<td>1: コアクトイ</td>
</tr>
<tr>
<td>K34 OUTPUT1の機能</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0: 機能無し</td>
</tr>
<tr>
<td>OUTPUT2の機能</td>
<td>0</td>
<td></td>
<td></td>
<td>1: インポジション</td>
</tr>
<tr>
<td>OUTPUT3の機能</td>
<td>1</td>
<td></td>
<td></td>
<td>2: オラーム</td>
</tr>
<tr>
<td>OUTPUT4の機能</td>
<td>2</td>
<td></td>
<td></td>
<td>3: 洪用出力</td>
</tr>
<tr>
<td>K46 原点復帰方式</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0: 押し当て原点復帰</td>
</tr>
<tr>
<td>K45 原点復帰方向</td>
<td>1</td>
<td></td>
<td></td>
<td>1: モータ側</td>
</tr>
<tr>
<td>K42 原点復帰速度</td>
<td>10</td>
<td></td>
<td></td>
<td>mm/s</td>
</tr>
<tr>
<td>K43 原点復帰加速度</td>
<td>100</td>
<td></td>
<td></td>
<td>mm/s²</td>
</tr>
<tr>
<td>K47 押し当て原点認識トルク</td>
<td>70</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>K48 原点オフセット</td>
<td>15.0</td>
<td>-100</td>
<td>100</td>
<td>mm</td>
</tr>
<tr>
<td>K55 インポジション軸</td>
<td>0.050</td>
<td>0.002</td>
<td>0.2</td>
<td>0.002 mm</td>
</tr>
<tr>
<td>K56 位置偏差しきい値</td>
<td>10.0</td>
<td>0.2</td>
<td>100</td>
<td>0.2 mm</td>
</tr>
<tr>
<td>K57 追先荷の走行時間</td>
<td>3000</td>
<td>100</td>
<td>5000</td>
<td>1 mm</td>
</tr>
<tr>
<td>K58 ソフトリミット反モータ側</td>
<td>□□ = 03 : 300</td>
<td>□□ = 04 : 400</td>
<td>□□ = 05 : 500</td>
<td>□□ = 06 : 600</td>
</tr>
<tr>
<td>K59 ソフトリミットモータ側</td>
<td>□□ = 03 : 0</td>
<td>□□ = 04 : 0</td>
<td>□□ = 05 : 0</td>
<td>□□ = 06 : 0</td>
</tr>
</tbody>
</table>

※1 「0」を入力した場合、ソフトリミット反モータ側が無効となります。
※2 「0」を入力した場合、ソフトリミットモータ側の表示は「0」ですが、実際には-0.2mmまで移動します。
以上の設定値を入力した場合は、表示どおりのソフトリミットモータ側で停止します。
表13.3 XY-HS00□□□-M10 出荷時設定値

<table>
<thead>
<tr>
<th>項目</th>
<th>呼び番号</th>
<th>設定範囲</th>
<th>機能/単位</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>XY-HS00□□□-M10出荷時設定値</td>
<td>最小</td>
<td>最大</td>
</tr>
<tr>
<td>K24 回転パルス出力</td>
<td>2.0</td>
<td>□□□= 09 : 0.9, □□□= 100 : 0.7</td>
<td>60</td>
</tr>
<tr>
<td>K26 INPUT1の論理</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>INPUT2の論理</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>K27 INPUT1の機能</td>
<td>7</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>INPUT2の機能</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>K33 OUTPUT1の論理</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>OUTPUT2の論理</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>OUTPUT3の論理</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>OUTPUT4の論理</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>K34 OUTPUT1の機能</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>OUTPUT2の機能</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>OUTPUT3の機能</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>OUTPUT4の機能</td>
<td>2</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>K46 原点復帰方式</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>K45 原点復帰方向</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>K42 原点復帰速度</td>
<td>10</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>K43 原点復帰加速度</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>K47 押し当て原点認識トルク</td>
<td>25</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>K48 原点オフセット</td>
<td>15.0</td>
<td>-100</td>
<td>100</td>
</tr>
<tr>
<td>K55 インポジション幅</td>
<td>0.050</td>
<td>0.002</td>
<td>0.2</td>
</tr>
<tr>
<td>K56 位置偏差しきい値</td>
<td>10.0</td>
<td>0.2</td>
<td>100</td>
</tr>
<tr>
<td>K57 過負荷検出時間</td>
<td>3000</td>
<td>0</td>
<td>5000</td>
</tr>
<tr>
<td>K58 ソフトリミット反モータ側</td>
<td>□□□= 09 : 900, □□□= 1000</td>
<td>0</td>
<td>900</td>
</tr>
<tr>
<td>K59 ソフトリミットモータ側</td>
<td>□□□= 09 : 0, □□□= 100 : 0</td>
<td>0</td>
<td>-900</td>
</tr>
</tbody>
</table>

※1 「0」を入力した場合, ソフトリミット反モータ側が無効となります.
※2 「0」を入力した場合, ソフトリミットモータ側の表示上は「0」ですが, 実際には-0.2mmまで移動します.
その他の数値を入力した場合は, 表示どおりのソフトリミットモータ側で停止します.
14. 改定記事

<table>
<thead>
<tr>
<th>訂正履歴</th>
<th>年.月.日</th>
<th>改訂内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCXY10001</td>
<td>'10.11.19</td>
<td>新規作成</td>
</tr>
</tbody>
</table>
| | '10.12.15 | ・P17 カバーユニット装着時の寸法を追記
（小数点以下を追記）
・P22 中荷重位置決め用シリーズの L1 寸法を訂正
・Microsoft.NET Framework に関する記述を訂正（2.0 以上→2.0）
・用語を統一
（最大速度→最高速度, 可搬荷重質量→可搬質量,
サーボシステム→サーボモータ,
INPUTCOM→INPUT COM
OUTPUTCOM→OUTPUT COM） |
| | '11.01.07 | ・P18～P19 外部構成機器の型式記述内容を変更
（HS□□...→HS00...）
・P20, P22, P24 用語を統一
（位置指令分解能→位置指令最小単位）
・P32 誤字訂正（入出力設定→入出力設定）
・P35 輕負荷位置決め用 SERIES の使用ボルトサイズを訂正
（M5→M4）
・P35 中荷重位置決め用 SERIES のボルト締付トルクを訂正
（7.2N・m→9N・m）
・P46 押し当て原点復帰のシーケンス記述を簡略化
・P47 原点復帰のシーケンス誤記を訂正
（押し当て原点復帰→原点復帰）
・P67, P74 原点復帰確認後に連続開始入力を操作する旨を「指示に基づく行為を強制する事項」に変更
・免責事項を訂正
（保証いたしません→保証の対象外となります）
・P88 確認フローを訂正
（入力ポートの確認→“1”または“3”を選択してください。） |
| | '11.02.07 | ・P16 取付けねじ類の内容を追記（開座, ナット, ねじ）
開座取付けの指示を指示
・P28, P108～P110 用語の誤記を訂正
（ORT→OTR, ORL→OTL）
・P35 スライダへ積載物を取り付ける際のボルトと締め付け
トルクを追記
・P75 連続運転時の停止時間→位置決め時間と停止時間に
変更
・誤字訂正（格式→株式） |
| SCXY10001A | '11.02.25 | 改版 |
| | | ・P7 モノキャリア, NSK K1 の商標に関する記述を追記.
・P28 ジョグ入力の説明に「アクティブの間～」を追記.
・用語を統一
（sec→s, 出来る→できる, 行なう→行う, 等→など
下さい→ください, P80 含んでおりません→含みません）
・P48 表 7.8 に「K46=3」を追記.
・「7.4.4 電源投入時の確認事項（ジョグ使用時）」を追加 |

115/116
日本精工株式会社

東京都品川区大崎1-6-3 日精ビル T141-8560

本 社
TEL:03-3778-7111㈹ FAX:03-3778-7431

座席機械販売本部
TEL:03-3778-7227㈹ FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-6501㈹ FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-7651㈹ FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-7251㈹ FAX:03-3778-7644

情報部
TEL:03-3778-7161㈹ FAX:03-3778-7644

メカトロ事業本部
TEL:0466-21-3027㈹ FAX:0466-21-3026

自動車事業本部
TEL:03-3778-7189㈹ FAX:03-3778-7917

営 業 本 部

座席機械販売本部
TEL:03-3778-7227㈹ FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-6501Евро FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-7651Евро FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-7251Евро FAX:03-3778-7644

情報部
TEL:03-3778-7161Евро FAX:03-3778-7644

メカトロ事業本部
TEL:0466-21-3027Евро FAX:0466-21-3026

自動車事業本部
TEL:03-3778-7189Евро FAX:03-3778-7917

産業機関

東京都品川区大崎1-6-3 日精ビル T141-8560

本社
TEL:03-3778-7111Евро FAX:03-3778-7431

座席機械販売本部
TEL:03-3778-7227Евро FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-6501Евро FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-7651Евро FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-7251Евро FAX:03-3778-7644

情報部
TEL:03-3778-7161Евро FAX:03-3778-7644

メカトロ事業本部
TEL:0466-21-3027Евро FAX:0466-21-3026

自動車事業本部
TEL:03-3778-7189Евро FAX:03-3778-7917

産業機関

東京都品川区大崎1-6-3 日精ビル T141-8560

本社
TEL:03-3778-7111Евро FAX:03-3778-7431

座席機械販売本部
TEL:03-3778-7227Евро FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-6501Евро FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-7651Евро FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-7251Евро FAX:03-3778-7644

情報部
TEL:03-3778-7161Евро FAX:03-3778-7644

メカトロ事業本部
TEL:0466-21-3027Евро FAX:0466-21-3026

自動車事業本部
TEL:03-3778-7189Евро FAX:03-3778-7917

産業機関

東京都品川区大崎1-6-3 日精ビル T141-8560

本社
TEL:03-3778-7111Евро FAX:03-3778-7431

座席機械販売本部
TEL:03-3778-7227Евро FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-6501Евро FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-7651Евро FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-7251Евро FAX:03-3778-7644

情報部
TEL:03-3778-7161Евро FAX:03-3778-7644

メカトロ事業本部
TEL:0466-21-3027Евро FAX:0466-21-3026

自動車事業本部
TEL:03-3778-7189Евро FAX:03-3778-7917

産業機関

東京都品川区大崎1-6-3 日精ビル T141-8560

本社
TEL:03-3778-7111Евро FAX:03-3778-7431

座席機械販売本部
TEL:03-3778-7227Евро FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-6501Евро FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-7651Евро FAX:03-3778-7644

座席機械製造本部
TEL:03-3778-7251Евро FAX:03-3778-7644

情報部
TEL:03-3778-7161Евро FAX:03-3778-7644

メカトロ事業本部
TEL:0466-21-3027Евро FAX:0466-21-3026

自動車事業本部
TEL:03-3778-7189Евро FAX:03-3778-7917