MEGATORQUE MOTOR™ System
User’s Manual
(EDC Driver Unit System)

PX series supplemental manual

M-E099DC0C2-183

NSK Ltd.

Document Number: C20183-01
Limited Warranty

NSK Ltd. warrants its products to be free from defects in material and/or workmanship which NSK Ltd. is notified of in writing within, which comes first, one (1) year of shipment or 2400 total operation hours. NSK Ltd., at its option, and with transportation charges prepaid by the claimant, will repair or replace any product which has been proved to the satisfaction of NSK Ltd. to have a defect in material and/or workmanship.

This warranty is the sole and exclusive remedy available, and under no circumstances shall NSK Ltd. be liable for any consequential damages, loss of profits and/or personal injury as a result of claim arising under this limited warranty. NSK Ltd. makes no other warranty express or implied, and disclaims any warranties for fitness for a particular purpose or merchantability.

Copyright 2012 by NSK Ltd., Tokyo, Japan

All rights reserved.

No part of this publication may be reproduced in any form or by any means without permission in writing from NSK Ltd.

NSK Ltd. reserves the right to make changes to any products herein to improve reliability, function or design without prior notice and without any obligation.

NSK Ltd. does not assume any liability arising out of the Application or use of any product described herein; neither does it convey any license under its present patent nor the rights of others.
Contents

1. Introduction --- 1-1
 1.1. Precautions for Use --- 1-1
 1.2. Note on compliance with UL Standards and CE Mark -------------- 1-1

2. Reference Number and Coding --------------------------------- 2-1
 2.1. PX Series Megatorque Motor ------------------------------------- 2-1
 2.2. EDC Driver Unit for PX Series Megatorque Motor ---------------- 2-1
 2.3. Cable Set -- 2-1
 2.4. Handy Terminal --- 2-1

3. Name of Each Part--- 3-1

4. Combination of Motor and Driver Unit--------------------------- 4-1

5. Motor Specifications ------------------------------------- 5-1

6. External Dimensions--- 6-1
 6.1. PX Series Megatorque Motors ----------------------------------- 6-1
 6.2. EDC Driver Unit -- 6-2

7. Driver Unit Specifications-- 7-1

8. Installation-- 8-1
 8.1. Environmental Conditions of Motor------------------------------- 8-1
 8.2. Coupling Load to the Motor ------------------------------------ 8-1
 8.3. Confirmations of Use Conditions ------------------------------- 8-2

Appendix 1: How to Check Motor Condition ------------------------ A-1
1. Introduction

This is the supplementary of the instruction manual “EDC Driver Unit System (Document Number: C20158).” This supplement describes the Megatorque Motor System composed of the EDC Driver Unit and the PX series Megatorque Motor. Please refer to the above mentioned instruction manual (Document No.C20158) for items not described in this document.

1.1. Precautions for Use

⚠️ **Warning**: Be sure not to activate the dynamic brake in the following conditions. Otherwise the dynamic brake circuit may break and the Motor will enter in a “free run” state, leading to possible injuries.

◊ Do not activate the dynamic brake in normal operations. Stop the Motor by a control command, not by the dynamic brake. The dynamic brake is an auxiliary function to stop the Motor immediately in an emergency. In the middle of operation, an alarm, a warning or the “Emergency stop” input activates the dynamic brake.
 • Warnings that initiate “Servo-off” state are “A3” (Software thermal), “C0” (Position command/Feedback error), “C5” (Field bass error), “F5” (Program error), and “F8” (Automatic tuning error).

◊ The load inertia to a Motor must be 100 times or less than the Motor inertia. In case of an indexing operation, a position command shall be 360 degrees or less, while the maximum speed for continual rotation must be $0.5 \text{ [sec}^{-1}]$ or less. (However, there may be a possibility to exceed the above limits in some cases. Please consult NSK when you require a close investigation on the limits.)

⚠️ **Caution**: When the Motor is continually accelerating a high inertial load with high acceleration, the system constantly outputs a high torque exceeding the rated torque, and thus likely to activate the warning “A3” (Software thermal). In such a case take a remedy to decrease the load inertia or to lower the speed.

1.2. Note on compliance with UL Standards and CE Mark

⚠️ **Caution**: PX Series Megatorque Motor and EDC Driver Unit for PX Series Megatorque Motor does not comply with UL Standards or CE Mark.
2. Reference Number and Coding

2.1. PX Series Megatorque Motor

Fig. 2-1: Reference number coding of PX series

M-PX 3 050 K N 502

Megatorque Motor
PX Series
Motor size code
Motor maximum torque [N-m]

Design serial number

KN: Standard

2.2. EDC Driver Unit for PX Series Megatorque Motor

Fig. 2-2: Reference number coding of EDC Driver Unit for PX3050 type Motor

M-EDC – PX3050 A B 5 F1 – 01

EDC Driver Unit
Motor model
Power voltage: A: 200 to 230 [VAC] (single phase)
Position sensor code
B: Absolute position sensor

-01: Connectors, fixing brackets and English manual are included.
-02: Connectors, fixing brackets and Japanese manual are included.

Design serial number

Function
C: CC-Link (Optional)

2.3. Cable Set

Fig 2-3: Reference number coding of Cable Set

M-C 004 SCP 03

Cable Set for Megatorque Motor
Cable length
Example: 002…2[m], 004…4[m], 006…6[m], 008…8[m]
Design serial number
03: Stationary Cable
13: Flexible Cable

Cable set for EDC Driver Unit
※Cable length has to be less than 8[m].

2.4. Handy Terminal

Fig 2-4: Reference number coding of Handy terminal

M-FHT 21

Handy Terminal
Design serial number
3. Name of Each Part

Fig 3-1: PX3050 type Motor

- Hollow
- Rotor (Rotating part)
- Cover (Fixed part)
- Resolver connector
- Motor connector
4. Combination of Motor and Driver Unit

Table 4-1: Combination of PX3050 type Motor and Driver Unit

<table>
<thead>
<tr>
<th>Motor diameter [mm]</th>
<th>Motor reference number</th>
<th>Driver Unit reference number</th>
<th>Power voltage [VAC]</th>
<th>Cable reference number</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ø160</td>
<td>M-PX3050KN502</td>
<td>M-EDC-PX3050AB5F1-***</td>
<td>200 to 230</td>
<td>M-C0SCP03 (Stationary cable) M-C0SCP13 (Flexible cable)</td>
<td>• Pulse train input</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-EDC-PX3050ABCF1-***</td>
<td>200 to 230</td>
<td>01: 1 [m] 02: 2 [m] 03: 3 [m] 04: 4 [m] 05: 5 [m] 06: 6 [m] 08: 8 [m]</td>
<td>• CC-Link</td>
</tr>
</tbody>
</table>
5. Motor Specifications

<table>
<thead>
<tr>
<th>Item [Unit]</th>
<th>Reference number</th>
<th>M-PX3050KN502</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor outside diameter [mm]</td>
<td>ø160</td>
<td></td>
</tr>
<tr>
<td>Maximum output torque [N•m]</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Rated output torque [N•m]</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Motor height [mm]</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Motor hollow diameter [mm]</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Maximum velocity [s⁻¹]</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Rated velocity [s⁻¹]</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Resolution of position sensor [count/revolution]</td>
<td>2 621 440</td>
<td></td>
</tr>
<tr>
<td>Absolute position accuracy [arc-sec]</td>
<td>90 *¹ (Interchangeable type)</td>
<td></td>
</tr>
<tr>
<td>Repeatability [arc-sec]</td>
<td>±2</td>
<td></td>
</tr>
<tr>
<td>Allowable axial load [N]</td>
<td>1 000 *²</td>
<td></td>
</tr>
<tr>
<td>Allowable radial load [N]</td>
<td>820 *³</td>
<td></td>
</tr>
<tr>
<td>Allowable moment load [N]</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Rotor inertia [kg•m²]</td>
<td>0.0028</td>
<td></td>
</tr>
<tr>
<td>Allowable range of inertia [kg•m²]</td>
<td>0.0028 to 0.28</td>
<td></td>
</tr>
<tr>
<td>Mass [kg]</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>International protection code</td>
<td>IP30 equivalent</td>
<td></td>
</tr>
</tbody>
</table>

Environmental conditions

Ambient temperature: 0 to 40[°C] Humidity: 20 to 80 [%], In door use only. Free from condensation, dust and corrosive gas.

*¹. This accuracy is guaranteed at the temperature of 25 ±5 [°C].
*². Under no radial load.
*³. Under no axial load.

- Cable length for PX series is up to 8[m].
- Please consult with NSK in case of a simultaneous application of axial load, radial load and moment load to a Motor.
- For an oscillating operation less than 45 [°], turn the Motor 90 [°] or more at least once a day.
- Conditions outside the allowable range of inertia may be applicable, depending on operating conditions. Contact NSK for details.
- Do not drive the load less than the allowable range of inertia.

⚠️ **Caution** : Axial load Fa and Radial load Fr and Moment load M shall be less than the limits specified in the above table.

<table>
<thead>
<tr>
<th>SI Unit System</th>
<th>1N = 0.102 [kgf]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N•m = 0.102 [kgf•m]</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5-1: Loads applied to a Motor

1) When F is an external force
 - Axial load: $F_a = F + F_0$
 - Moment load: $M = 0$

2) When F is an external force
 - Axial load: $F_a = F + F_0$
 - Moment load: $M = F \times L$

3) When F is an external vertical load
 - Radial force: $F_r = F + F_0$
 - Moment load: $M = F \times (L + A) + F_0 \times (L + A)$

Table 5-2: Dimension A (distance between the bearing and the rotor)

<table>
<thead>
<tr>
<th>Motor reference number</th>
<th>M-PX3050KN502</th>
</tr>
</thead>
<tbody>
<tr>
<td>A [mm]</td>
<td>30.4</td>
</tr>
</tbody>
</table>
6. External Dimensions

6.1. PX Series Megatorque Motors

Fig. 6-1: PX3050 type Motor

⚠️ Caution: Set up the motor on either the surface A or B.

⚠️ Caution: If you use the surface A, the width of fit (φ78h8) is less than 3.5[mm].

⚠️ Caution: The Bend radius of the motor cable lead and the resolver cable lead should be R30 [mm] or more.

⚠️ Caution: Do not use the leads of the motor cable and resolver cable with flexing motion.

⚠️ Caution: Do not add stress (tension, vibration, etc) to the joint of the leads and the connector. It causes the disconnection and the loose connection.
6.2. EDC Driver Unit

Fig. 6-2 EDC Driver Unit for PX3050 type Motor

Fig. 6-3 CC-Link Compatible EDC Driver Unit for PX3050 type Motor
7. Driver Unit Specifications

<table>
<thead>
<tr>
<th>Table 7-1: Specifications of EDC Driver Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Output current</td>
</tr>
<tr>
<td>Rated output [Arms]</td>
</tr>
<tr>
<td>Maximum output [Arms]</td>
</tr>
<tr>
<td>Power input</td>
</tr>
<tr>
<td>Rated capacity [kVA]</td>
</tr>
<tr>
<td>Max. capacity [kVA]</td>
</tr>
<tr>
<td>Control power source</td>
</tr>
<tr>
<td>Position sensor resolution [count/rev]</td>
</tr>
<tr>
<td>Maximum velocity [s⁻¹]</td>
</tr>
<tr>
<td>Positioning operation mode</td>
</tr>
</tbody>
</table>

Pulse train command
- Photo coupler input: Maximum pulse frequency: 1 [MHz]
- Input format: CW/CCW, Pulse and direction, Φ/ΦB
- Electronic gear A/B multiple available (1 000 to 5 242 880 [count/rev])
- Maximum 1 310 720 [count/rev.] (Quadrupled: 5 242 880 [Count/rev])
- The maximum signal frequency is limited to 781 [kHz] and thus the setting of resolution limits the maximum revolution speed. (Maximum speed: s⁻¹ = 781 [kHz]/Resolution of ΦA [or ΦB])
- Resolution of ΦZ: 80 [count/rev]

Control input
- Photo coupler input (±Common available), 17 input ports, 24 [V] input voltage
- Emergency stop, Alarm clear, Over travel limit +/-, Servo ON, Program operation start, Stop, Internal program P# channel switching (0 to 7), Jog, Jog direction, (Hold, Velocity override, Integration OFF, Home return start and Home position limit)

Position feedback signal
- Photo coupler output (±Common available), 7 output ports. Maximum switching capacity: 24 [VDC]:50 [mA]
- Drive unit ready, Warning, Over travel limit detection +/- direction, Servo state, Busy, In-position, Target proximity A, Zone A•B•C, Travel limit +/-, Normal, Position error under/over, Velocity error under/over, Torque command under/over, Thermal loading under/over, Home return complete, Home position defined

Control output
- Excess error, Program error, Automatic tuning error, Position command/Feedback error, Field bus warning, Software thermal error, Home position undefined, Main AC line under voltage, Travel limit over, RAM error, ROM error, System error, Interface error, ADC error, Emergency stop, CPU error, Fieldbus error, Position sensor error, Absolute position error, Motor cable disconnected, Excess velocity, Resolver excitation amplifier alarm, Communication error, Overheat, Main AC line over voltage, Excess current, Control AC line under voltage, Power module error

Alarm
- Analog monitor ×2 (Free range and offset setting), RS-232C monitor

Communication
- RS-232C serial communication (Asynchronous, 9 600 [bps])

Data backup
- EEPROM (Overwriting and deleting of parameters are limited to 100 000 times)

Others
- Automatic tuning
- Function setting to Input/Output port
- Temporal parameter setting by a program operation.
- Individual setting of acceleration and deceleration
- Acceleration profiling (Modified sine, Modified trapezoid, Cycloid and Half sine)

Fieldbus
- CC-Link Ver.1.10 compatible (Optional EDC Driver Unit compatible to CC-Link is required)

Environment
- Ambient temperature: 0 to 50[°C]
- Storage temperature: -20 to 70[°C]
- Ambient/storage humidity: 90[%] or less (No condensation)
- Vibration resistance: 4.9 [m/s²]

Built-in function
- Optional dump resistor available when the regeneration current is beyond the capacity of built-in resistor. (M-E014DCKR1-100, M-E014DCKR1-101) • Connect to R+, R-, SE+ and SE- (Never short-circuit them.)
- Dynamic brake
- Functions at the state of Power-off, Servo-off and Warning. The command KB terminates the dynamic brake function. (Refer to “9.2. Glossary of Command and parameter.)

Connectors
- RS-232C: CN1 D-sub 9 pins
- Control I/O: CN2 Standard: half pitch connector 50 pins
- Position sensor: CN3 Half pitch connector 14 pins
- Motor/Optional dump resistor: CN4 Plastic connector (UL and CE qualified)
- Control/Main power: CN5 Plastic connector (UL and CE qualified)
- CC-Link: CN6 Plastic connector 5 pins

Mass [kg]
- Mass: 1.8
- Standard: 2.0

*1: These functions become effective by changing some functional allocation of control Input/Output.
8. Installation

8.1. Environmental Conditions of Motor

- Use the Motor in the indoor conditions free from dust and corrosive gas.

- The operating ambient temperature of the Motor shall be 0 to 40°C.

- The PX series Megatorque Motors are neither dust-proof nor waterproof. Do not expose the Motor to water or oil from any source.

- It is essential to securely fix the Motor to a mounting base of which rigidity is sufficient enough. Otherwise, mechanical resonance may occur.

⚠️ **Warning**: When fixing the Motor, use bolt holes on its bottom.

- The flatness of the mounting surface for the Motor shall be 0.02 mm or less.

- The Motor can be mounted vertically or horizontally.

- The table below shows the tightening torque of bolt and thread depth for each Motor type.

<table>
<thead>
<tr>
<th>Motor type</th>
<th>PX3050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting surface</td>
<td>A(bolt holes:M6)</td>
</tr>
<tr>
<td>Tightening torque [N·m]</td>
<td>14 or less</td>
</tr>
<tr>
<td>Thread depth [mm]</td>
<td>7 to 8.5</td>
</tr>
</tbody>
</table>

⚠️ **Caution**: Set up the motor on either the surface A or B.

⚠️ **Caution**: If you use the surface A, the width of fit(φ78h8) is less than 3.5[mm].

⚠️ **Caution**: Do not connect the outgoing lines of the Motor cable and resolver cable of the PX type Motor to a moving part. The bending radius of the outgoing lines shall be R30[mm] or more.

8.2. Coupling Load to the Motor

⚠️ **Warning**: Fix the load using the bolt holes on the rotor surface. Be sure to fasten the bolts firmly.

- The table below shows the tightening torque of bolt and thread depth for each Motor type.

<table>
<thead>
<tr>
<th>Motor type</th>
<th>PX3050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tightening torque [N·m]</td>
<td>4.4 or less</td>
</tr>
<tr>
<td>Thread depth [mm]</td>
<td>7 to 8.5</td>
</tr>
</tbody>
</table>
8.3. Confirmation of Use Conditions

- In case of the Megatorque Motor system, the moment of inertia of load is extremely higher than that of the rotor. The table below shows the allowable moment of inertia for each Motor type.

Table 8-3: Allowable moment of inertia for Motor

<table>
<thead>
<tr>
<th>Motor type</th>
<th>Moment of inertia of the rotor [kg·m²]</th>
<th>Allowable moment of inertia [kg·m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX3050</td>
<td>0.0028</td>
<td>0.0028 to 0.28</td>
</tr>
</tbody>
</table>

⚠️ Caution: Be sure to confirm the allowable moment load and axial load and radial load to the Motor under the use conditions.

- Please refer to “5. Motor Specifications” for the allowable moment load and axial load and radial load for each Motor.
Appendix 1: How to Check Motor Condition

- Examine the resistance and the insulation resistance of the Motor winding to check if the Motor is in normal condition. It can be regarded as it is normal if all check results are within the specifications.

- First, check the winding resistance including the Motor cable. If the result is not satisfactory, check the Motor only.

1. Resistance check of Motor winding

Fig A-1: Check with the cable set

Fig A-2: Check with the Motor only

- Do not turn the rotor while checking the Motor winding.

Table A-1: Checking points

<table>
<thead>
<tr>
<th></th>
<th>Cable connector</th>
<th>Motor connector</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase UV</td>
<td>(1) ↔ (2)</td>
<td>(1) ↔ (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(U) ↔ (V)</td>
<td>(U) ↔ (V)</td>
<td></td>
</tr>
<tr>
<td>Phase VW</td>
<td>(2) ↔ (3)</td>
<td>(2) ↔ (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V) ↔ (W)</td>
<td>(V) ↔ (W)</td>
<td></td>
</tr>
<tr>
<td>Phase WU</td>
<td>(3) ↔ (1)</td>
<td>(3) ↔ (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(W) ↔ (U)</td>
<td>(W) ↔ (U)</td>
<td></td>
</tr>
</tbody>
</table>

Table A-2: Resistance specification of Motor winding

<table>
<thead>
<tr>
<th>Motor type</th>
<th>Winding resistance [Ω]</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX3050</td>
<td>2.2</td>
<td>1. ± 30[%] of the value in the left</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Variation between each phase UV, VW, and WU is less than 15[%]</td>
</tr>
</tbody>
</table>

- Please ask NSK for a Motor with special winding specifications or a Cable longer than 4 m.
2. Resistance check of the resolver winding

Fig A-3: Check with the Cable set

Fig A-4: Check with the Motor only

Table A-3: Checking points of the resolver with an absolute position sensor and winding resistance

<table>
<thead>
<tr>
<th>Cable connector</th>
<th>Motor connector</th>
<th>Result</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>INC-A (INC-A) ↔ (INC-C)</td>
<td>A(1) ↔ A(4)</td>
<td>1. Resistance • PX3 : 8.3 ± 1 [Ω]</td>
<td></td>
</tr>
<tr>
<td>INC-B (INC-B) ↔ (INC-C)</td>
<td>A(2) ↔ A(4)</td>
<td>2. Variation between each phase A, B and C shall be 1.0 [Ω] or less.</td>
<td></td>
</tr>
<tr>
<td>INC-C (INC-B) ↔ (INC-C)</td>
<td>A(3) ↔ A(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS-A (ABS-A) ↔ (ABS-C)</td>
<td>B(1) ↔ B(4)</td>
<td>1. Resistance • PX3 type: 8.3 ± 1 [Ω]</td>
<td></td>
</tr>
<tr>
<td>ABS-B (ABS-B) ↔ (ABS-C)</td>
<td>B(2) ↔ B(4)</td>
<td>2. Variation between each phase A, B and C shall be 1.0 [Ω] or less.</td>
<td></td>
</tr>
<tr>
<td>ABS-C (ABS-C) ↔ (ABS-C)</td>
<td>B(3) ↔ B(4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please ask NSK for the specifications of the Motor with special winding, and the Cable longer than 4 [m].

Fig A-5: Connection of the Motor with the absolute position sensor [Reference only]

Driver unit connector

- INC-A
- INC-B
- INC-C
- INC-common
- ABS-A
- ABS-B
- ABS-C
- ABS-common
- FG (shielded wire)

Motor connector

- A(1)
- A(2)
- A(3)
- A(4)
- B(1)
- B(2)
- B(3)
- B(4)

Incremental resolver

Absolute resolver
3. Insulation resistance check of Motor winding

⚠️ Caution: Disconnect the Motor from the Driver Unit when checking insulation resistance of the Motor.

⚠️ Caution: Checking voltage must be 500 [VDC] or less.

Fig A-6: Check with the Cable

![Check with the Cable Diagram]

Fig A-7: Check the Motor only

![Check the Motor only Diagram]

Table A-4: Checking point

<table>
<thead>
<tr>
<th></th>
<th>Cable connector</th>
<th>Motor connector</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>øU – PE</td>
<td>(1) ↔ (9)</td>
<td>(1) ↔ (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(U) (PE)</td>
<td>(U) (PE)</td>
<td></td>
</tr>
<tr>
<td>øV – PE</td>
<td>(2) ↔ (9)</td>
<td>(2) ↔ (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V) (PE)</td>
<td>(V) (PE)</td>
<td></td>
</tr>
<tr>
<td>øW – PE</td>
<td>(3) ↔ (9)</td>
<td>(3) ↔ (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(W) (PE)</td>
<td>(W) (PE)</td>
<td></td>
</tr>
</tbody>
</table>

Table A-5: Specification of insulation resistance (Common to all type of Motor)

<table>
<thead>
<tr>
<th></th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>With cable</td>
<td>1 [MΩ] or over</td>
</tr>
<tr>
<td>Motor only</td>
<td>2 [MΩ] or over</td>
</tr>
</tbody>
</table>

4. Visual check of the Motor and the Cables

- Check the Motor for any damage.
- Check the cable for any damage on the cable insulation.
Worldwide Sales Offices

NSK LTD.-HEADQUARTERS, TOKYO, JAPAN
KULTUR WORKER BUSINESS DEPARTMENT
GLOBAL AFTERMARKET DEPARTMENT
PRECISION MACHINERY DEPARTMENT
MECHATRONICS BUSINESS DEPARTMENT
AUTOMOBILE BUSINESS UNION-HEADQUARTERS

NSK LTD.-HEADQUARTERS, TOKYO, JAPAN
KULTUR WORKER BUSINESS DEPARTMENT
GLOBAL AFTERMARKET DEPARTMENT
PRECISION MACHINERY DEPARTMENT
MECHATRONICS BUSINESS DEPARTMENT
AUTOMOBILE BUSINESS UNION-HEADQUARTERS

NSK SINGAPORE (PRIVATE) LTD.
NSK EUROPE LTD. (EUROPEAN HEADQUARTERS)
NSK RODAMIENTOS MEXICANA, S.A. DE C.V.
NSK STEERING SYSTEMS AMERICA, INC.
NSK PRECISION AMERICA, INC.

For the latest information, please refer to the NSK website.
www.nsk.com
<As of June 2012>

NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections.

For more information about NSK products, please contact: